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Abstract

The asset-pricing literature has proposed several return forecasting methods rang-

ing from conventional Fama-MacBeth regressions to advanced methods based on

machine learning. The literature on estimation of covariance matrices has pro-

posed many sophisticated estimators based on factor models, shrinkage methods or

GARCH. We comprehensively examine whether advances in the two strands of liter-

ature can jointly improve the out-of-sample performance of mean-variance efficient

(MVE) portfolios. Focusing on the 500 largest stocks, we find that MVE portfolios

formed using improved inputs do not compare favorably to the passive strategy after

accounting for transaction costs. However, their after-cost performance can be sub-

stantially improved through risk targeting coupled with transaction cost manage-

ment. Notably, the transaction-cost-managed risk-targeted portfolios constructed

using return forecasts from Fama-MacBeth regressions with the (daily) sample or

Galton covariance matrix can attain net Sharpe ratios greater than one and signifi-

cantly outperform the passive counterpart.
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1 Introduction

The Nobel prize-winning work of Markowitz (1952) shows how to construct a mean-

variance efficient (MVE) portfolio given a vector of expected returns and the covari-

ance matrix of assets. Though theoretically sound, the Markowitz model struggles in

out-of-sample (OOS) contexts (Jobson and Korkie 1980; Michaud 1989; Okhrin and

Schmid 2006; Kan and Smith 2008). This OOS inefficiency results from estimation

error both in the sample mean and in the sample covariance matrix.

It is well established that the sample mean is a noisy estimator for expected

returns; moreover, the Markowitz optimizer is more sensitive to errors in means

than those in variances or covariances (Best and Grauer 1991; Chopra and Ziemba

1993). Though computationally simple, unbiased and intuitively attractive, the

sample covariance matrix is subject to the curse of dimensionality and thus not

always a desirable estimator for the covariance matrix, especially when the number

of observations in an estimation sample is comparable to or greater than the number

of assets. Furthermore, the inverse of the sample covariance matrix is a biased

estimator of the true inverse covariance matrix (Bai and Shi 2011).

The starting motivation of our paper is that the asset-pricing literature and the

literature on covariance matrix estimation have proposed a variety of sophisticated

estimators in place of sample estimates (i.e., historical means and covariances);

however, the advances in the two strands of literature are seldom jointly studied in

portfolio optimization contexts.1

For the past 30 years, numerous stock characteristics with return forecasting

power have been documented in the asset-pricing literature. Prior studies tend to

exploit stock characteristics in portfolio management by constructing characteristic-

sorted portfolios or factor portfolios in line with Fama and French (1993). However,

the portfolio sorting approach is incompatible with controlling simultaneously for a

large number of characteristics. Some studies propose estimating expected returns

from a parsimonious factor model consisting of only the market factor or a small set

of factors able to span many characteristics.2 But this method might omit important

asset-pricing factors and neglect potential nonlinear predictive power of characteris-

tics for returns as well as interactions among characteristics. Alternatively, several

1As an example, Ledoit and Wolf (2017) explain that “It may be possible to cumulate the
improvements of the two strands of literature by combining our method for the estimation of the
covariance matrix with some other method for the reduction in the estimation risk of the vector
of expected returns. This topic is an interesting avenue for future research but it lies outside the
scope of the present paper.”

2E.g., Sharpe (1963) proposes the single-index model to estimate expected returns. Fama and
French (2020) examine the performance of their 5-factor and 6-factor models (Fama and French
2015, 2018) in predicting expected returns. Other recent leading models include the q-factor
model (Hou, Xue, and Zhang 2015), the mispricing factors (Stambaugh and Yuan 2017), and the
behavioral factors of Daniel, Hirshleifer, and Sun (2020).
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articles use cross-sectional Fama and MacBeth (1973, Fama-MacBeth) regressions

to conduct the expected return estimation (Haugen and Baker 1996; Lewellen 2015;

Green, Hand, and Zhang 2017; Bessembinder, Cooper, and Zhang 2018; Fama and

French 2020). Compared to the method based on parsimonious factor models, this

approach can accommodate a large number of characteristics. Moreover, Fama and

French (2020) show that for the same set of characteristics, it compares favorably to

the time-series factor-model counterpart in estimating expected returns. Nonethe-

less, it still fails to account for potential nonlinearities or characteristic interactions.

A recent literature proposes addressing the concerns about conventional methods

using machine learning techniques. Kelly, Pruitt, and Su (2019, KPS) and Gu,

Kelly, and Xiu (2021, GKX2021) propose conditional latent factor pricing models.

Those use observable characteristics to determine exposure to latent risk factors,

both of which can potentially accommodate all existing stock characteristics. The

former adopts a linear specification to model the characteristic-beta relationship

and solve the problem via alternating least squares, while the latter uses a neural

network model to account for both nonlinear characteristic-beta relationships and

characteristic interactions in beta estimation. Gu, Kelly, and Xiu (2020, GKX2020)

and Freyberger, Neuhierl, and Weber (2020, FNW) directly model expected risk

premiums of individual stocks as a function of a large number of covariates and

advocate the use of complex functional forms such as the nonparametric additive

model (FNW) and neural networks (GKX2020) in return forecasting. To justify

the economic contribution of a return forecasting method, this strand of literature

usually examines the profitability of a long-short portfolio formed on estimated

expected returns. Despite the fact that the performance of expected-return-sorted

portfolios are often evaluated in terms of their mean-variance efficiency, the expected

portfolio risk, which depends on the covariance matrix of assets returns, is not taken

into consideration when forming such portfolios.

The literature on covariance matrix estimation has proposed several sophisticated

estimators to address the shortcomings of the sample covariance matrix. However,

when assessing the quality of a proposed estimator in portfolio optimization contexts,

relevant studies typically refrain from estimating expected returns and instead focus

on the realized risk of the global minimum variance (GMV) portfolio based on

the estimator (e.g., Chan, Karceski, and Lakonishok 1999; Ledoit and Wolf 2017;

Hautsch and Voigt 2019). After all, the estimated covariance matrix is the only

input of the GMV optimization, so ex post risk of GMV portfolios is a plausible

direct metric of the success of the estimation.3

3Two exceptions are Engle, Ledoit, and Wolf (2019, ELW) and De Nard, Ledoit, and Wolf
(2021, DLW) who exploit their proposed estimators in the full Markowitz optimization. But they
just use the momentum signal to form return forecasts.
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Our empirical analysis covers ten estimators for expected returns. The first two

are the sample mean and the recently proposed Galton corrected sample mean de-

veloped by Barroso and Saxena (2022). The rest include four methods based on

Fama-MacBeth regressions and four estimators employing machine leaning tech-

niques, all of which incorporate stock characteristics into estimation.

Our Fama-MacBeth regressions use the large set of 62 characteristics in FNW.

We consider two investment universes, one consists of the stocks with market cap-

italization larger than the NYSE median4 and the other of all stocks. Estimations

with all stocks are with weighted least squares with market equity as weights. Fo-

cusing on large stocks only, or weighting errors by market cap, ensures our results

are not driven by predictability in small cap stocks that collectively account for

only a very small part of the market. Using a large predictor set could result in

overfitting of the Fama-MacBeth models. To mitigate this concern, along the lines

of how Barroso and Saxena (2022) shrink sample means, we propose two shrink-

age Fama-MacBeth estimators, which use historical OOS forecast errors of plain

Fama-MacBeth regressions to correct estimates.

The four methods related to machine learning techniques include the nonpara-

metric additive model coupled with the adaptive group lasso (FNW), instrumen-

tal principal component analysis (IPCA) developed by KPS, “feed-forward” neural

networks advocated by GKX2020 and conditional autoencoder model proposed by

GKX2021. We confirm that all nine alternative estimators deliver superior return

forecasting performance for stocks in our investment universe compared to the sam-

ple mean or a naive forecast of zero.

Our main empirical applications cover four covariance matrix estimators: the co-

variance matrix implied by the single-index model of Sharpe (1963), the daily sample

covariance matrix, the Galton covariance matrix of Barroso and Saxena (2022), and

the dynamic nonlinear shrinkage estimator of ELW. The first two estimators are

commonly used in the literature as well as in practice. The other two estimators,

which are newly proposed in the literature, represent linear shrinkage methods and

dynamic shrinkage methods, respectively. The covariance matrix implied by the

single-index model is always nonsingular regardless of dimension sizes. Singularity

and quality of the sample covariance matrix depend on the concentration ratio (i.e.,

ratio of the number of assets over the number of historical observations). Since we

use daily returns for a 500-stock universe and an estimation window of 60 months,

the ratio is around 0.4, which is much less than one. Thus the sample covariance

matrix is not as unfavorable as in studies computing the sample covariance matrix

4Lewellen (2015) define large-cap stocks in the same way.
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from monthly returns.5

Comparing eight prominent estimators in the literature in terms of OOS standard

deviation of the GMV portfolio, the daily sample covariance matrix performs better

than the single index model but worse than the LW2003 method.6 The ELW and

Galton estimators are the two top performers. All methods work to reduce risk

versus the value-weighted portfolio.

Given these improved optimization inputs, we first examine whether they can re-

sult in abnormal OOS performance of MVE portfolios relative to the value-weighted

portfolio for an investment universe consisting of top-500 stocks by market equity

over the 1987:01-2020:12 period. We find that of 40 tangency portfolios, only ten

outperform the passive strategy in a statistically significant way, seven of those use

our shrinkage Fama-MacBeth estimators. This shows that it is possible to improve

the OOS performance of MVE portfolios through incorporating stock characteris-

tics into optimization. However, compared to shrinking ordinary Fama-MacBeth

estimates, using complex functional forms along with machine learning techniques

brings limited benefits to mean-variance optimization, at least for large-cap stocks.

Furthermore, owing to the “error-maximization” property of the mean-variance

optimizer and instability of the denominator of the tangency portfolio formula, some

tangency portfolios and all complete portfolios tend to take extreme positions and

thus deliver unrealistic OOS standard deviation. In addition, these portfolios occa-

sionally go bankrupt and require a high degree of turnover. Motivated by Kirby

and Ostdiek (2012) who target the estimated expected returns of a benchmark

portfolio, we target the estimated variance of the value-weighted portfolio when

constructing MVE portfolios. That is, we employ an upper (expected) variance

bound as a constraint in the quadratic-utility-maximization problem.7 The result-

ing Risk-Targeted (RT) portfolios generally compare favorably to the unconstrained

counterparts. Notably, all eight RT portfolios constructed using combinations of

characteristic-based expected return estimators with the Galton covariance matrix

5That is, for the same 60-month estimation window, the monthly sample covariance matrix is
not invertible for a 500-stock universe and is indeed of large dimension for a 50-stock universe.

6Using a 500-stock universe, Jagannathan and Ma (2003) document that the GMV portfolio
built using the daily sample covariance matrix outperforms that constructed using the covariance
matrix implied by the single-index model or the three-factor model of Fama and French (1993)
and performs as well as that constructed from the linear shrinkage estimator of Ledoit and Wolf
(2003, LW2003). However, for the estimators proposed after the publication of Jagannathan and
Ma (2003), their corresponding GMV portfolios all yield lower ex post standard deviation than the
GMV portfolio based on the daily sample covariance matrix.

7Jagannathan and Ma (2003) argue that despite introducing specification error, a constraint
on portfolio weights can reduce sampling error even if the constraint is improper in the popula-
tion. Apart from weight constraints, they also emphasize the importance of using better return
forecasts. They document that tangency portfolios built using sample means in combination with
weight constraints or an improved covariance matrix estimator underperform the equal-weighted
portfolios in terms of the before-cost Sharpe ratio and suggest that future research should incor-
porate information beyond historical means into the estimation of expected returns.
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deliver reasonable OOS standard deviation and never go bankrupt during the OOS

period; furthermore, they can attain impressive Sharpe ratios ranging from 1.10 to

2.04 and significantly outperform the passive counterpart.

Apart from estimation risk, investors face challenges of overcoming transaction

costs. The extant literature raises a concern that the presence of trading costs

can lead to a drastic performance deterioration for active portfolios. Examining

tangency portfolios estimated from various improved inputs, Barroso and Saxena

(2022) document that except for tangency portfolios based on their Galton estimates,

none can beat the value-weighted and equal-weighted portfolios in terms of the

Sharpe ratio net of transaction costs of 10 bps. Avramov, Cheng, and Metzker (2022)

examine net-of-costs profitability of the recently documented long-short machine-

learning portfolios and point out that “accounting for reasonable transaction costs

would make it difficult for most machine learning signals to leave alpha on the

table”.8 Ledoit and Wolf (2017, LW2017) demonstrate that for the investment

universe consisting of the 500 largest stocks, no GMV portfolio can achieve a higher

Sharpe ratio than the 1/N portfolio when the bid-ask spread is greater than or equal

to 5 bps regardless of GMV estimators employed. All of these studies highlight the

importance of managing transaction costs ex ante.

For simplicity, previous portfolio optimization studies often assume a flat cost

that is constant over time and across stocks. To better measure how transaction

costs erode the benefits of a strategy, we build on the comparative results of Abdi

and Ranaldo (2017) and use instead the closing quoted spread of Chung and Zhang

(2014) and the estimator of Abdi and Ranaldo (2017).9 This endows our portfolio

optimization tests with realistic estimates incorporating well-known cross-sectional

and time series heterogeneity in trading costs.

In this realistic setting, all mean-variance optimized portfolios that do not ac-

counting for transaction costs ex ante, including the GMV, tangency, complete and

RT portfolios, fail to outperform the passive strategy in a statistically significant way

in terms of net-of-costs Sharpe ratios. This motivates us to investigate whether (ex

ante) transaction cost management could improve after-cost performance of MVE

8In addition, FNW show that decile-spread portfolios formed on expected returns estimated
using a nonparametric additive model regularized by the adaptive group lasso or a linear model
regularized by the adaptive lasso, in an universe excluding micro-cap stocks, produce negative
net-of-costs Sharpe ratios.

9DeMiguel, Garlappi, and Uppal (2009), Kirby and Ostdiek (2012), Hautsch and Voigt (2019),
and Barroso and Saxena (2022), for example, assume flat costs. Abdi and Ranaldo (2017) find that
the two estimators in our study outperform in terms of correlation with effective spreads estimated
from the Trade and Quote (TAQ) data. Brandt, Santa-Clara, and Valkanov (2009), Avramov,
Cheng, and Metzker (2022) and Freyberger, Neuhierl, and Weber (2020) model transaction costs
as a linear function of relative market capitalization and a time trend. But Novy-Marx and Velikov
(2016) show that fails to account for a nonlinear relation between size and transaction costs and
also for idiosyncratic volatility, a major determinant of costs.
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portfolios built using sophisticated estimators. We incorporate the expected trans-

action costs into the optimization problem of the RT portfolio. That is, we use a

turnover penalization and an upper risk bound in the quadratic utility maximiza-

tion problem. We show that this problem is a convex quadratically constrained

quadratic program, which can be solved by the interior-point method with great

efficiency. More importantly, its solution is always globally optimal.

The turnover penalization acts similarly to the lasso penalty of Tibshirani (1996)

on weights, and effective one-way spreads of each stock observable on the formation

date are used to govern the regularization intensity. We keep the risk bound for two

reasons. First, the imposition of the bound can render the optimized portfolios com-

parable to the passive strategy in terms of OOS standard deviation. Second, it can

refrain the mean-variance optimizer from producing extreme weights when the mar-

ket is liquid, since during that period regularization effects of turnover regularization

on the optimizer are considerably weaker.

Calming the portfolio with turnover penalties makes a dramatic difference. All

32 transaction-cost-managed RT (TCM-RT) portfolios that exploit stock character-

istics produce higher Sharpe ratios than the value-weighted strategy. In particular,

those constructed using combinations of a Fama-MacBeth-based estimator with the

daily sample covariance matrix can achieve net-of-costs Sharpe ratios between 1.10

and 1.20 that significantly outperform the value-weighted counterpart. Moreover,

replacing the sample covariance matrix with the Galton covariance matrix can fur-

ther reduce the realized risk of TCM-RT portfolios as well as their reliance on

short positions. The resultant portfolios using Fama-MacBeth forecasts can achieve

net-of-costs Sharpe ratios around 1.10. However, if short sales are prohibited, no

TCM-RT portfolio can significantly outperform the passive strategy.

Using the same set of optimization inputs, we study the OOS after-cost per-

formance of another mean-variance optimized portfolio: Reward-to-Risk Timing

(RRT) portfolio proposed by Kirby and Ostdiek (2012), which features low turnover

and prohibits short selling by design. We find that although all RRT portfolios in-

cluding the one using sample estimates can economically beat the passive strategy,

their outperformance is statistically insignificant. For comparison, we also examine

the OOS performance of another popular method that exploits stock characteris-

tics in portfolio management: parametric portfolio policies of Brandt, Santa-Clara,

and Valkanov (2009, PPP). We find that the best performing portfolio policy can

achieve a Sharpe ratio of 0.85 after costs, while an economically sizable gain, this

is not statistically significantly different from the value-weighted portfolio. Also,

compared to the Markowitz model, it is hard to impose short-sale constraints in the

PPP optimization without destroying its convexity.

The remainder of the article is organized as follows. Section 2 reviews the rel-
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evant literature. Section 3 and Section 4 describe return forecasting methods and

covariance matrix estimators considered in our empirical applications, respectively.

Section 5 presents empirical results. Section 6 concludes the paper.

2 Related Literature

Our work contributes to the literature on estimation of mean-variance efficient port-

folios. It is well-known that plain Markowitz portfolio performs poorly out of sam-

ple. Jobson and Korkie (1980), Michaud (1989) and Best and Grauer (1991) at-

tribute its undesirable OOS performance to the “error-maximization” property of

the Markowitz optimizer. Best and Grauer (1991) show that the optimization results

are highly sensitive to changes in means. On top of Best and Grauer (1991), Chopra

and Ziemba (1993) document that estimation error in means has more impact on

optimization than that in variances or covariances. Estimation error is consequen-

tial since, as proven by Okhrin and Schmid (2006), it implies that the expectation

of optimal weights in terms of the Sharpe ratio does not even exist. In a related

result, Kan and Smith (2008) show that the minimum-variance frontier computed

using sample estimates is a considerably biased estimator of the true frontier.

Okhrin and Schmid (2007) examine whether the plain Markowitz portfolio can

benefit from using improved estimates and find that shrinkage estimators of Jorion

(1986) and LW2003 do exhibit better performance than sample estimators. But they

also show this improvement only holds when the number of assets is small.10 Exam-

ining 14 mean-variance portfolio optimization methods across 7 financial datasets,

DeMiguel, Garlappi, and Uppal (2009) find that no model can consistently outper-

form the equal-weighted portfolio (a.k.a. the “1/N” rule) in terms of the Sharpe ra-

tio, certainty-equivalent return, or turnover. By contrast, Kirby and Ostdiek (2012)

point out that the results of DeMiguel, Garlappi, and Uppal (2009) are sensitive

to research design. If the MVE portfolio is constructed by targeting the estimated

expected return of the “1/N” portfolio rather than by plugging estimates into the

tangency portfolio formula, the resulting optimized portfolios tend to compare fa-

vorably to the “1/N” portfolio. Yet, they also show this outperformance is not

robust to transaction costs. To improve after-cost performance of mean-variance

portfolios, they develop two optimization methods that can deliver portfolios with

low turnover and high after-cost profitability. In particular, they can significantly

outperform the “1/N” rule after accounting for transaction costs.

Our work is also related to recent studies on estimation of MVE currency

10Similar to our exercises, they combine an improved mean estimator: shrinkage means of Jo-
rion (1986)) with an improved covariance matrix: shrinkage covariance matrix of LW2003 in the
construction of mean-variance optimized portfolios.
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portfolios. Filippou, Rapach, Taylor, and Zhou (2022) construct quadratic-utility-

maximizing portfolios by combining currency (excess) return forecasts, which are

formed using 70 predictors and various machine learning techniques, with expo-

nentially weighted moving average (EWMA) estimator for the covariance matrix.

Chernov, Dahlquist, and Lochstoer (2020) estimate the ex ante MVE portfolio using

conditional forecasts of currency excess returns based on three currency character-

istics and a covariance matrix estimator that combines the nonlinear method of

LW2020 with the EWMA model.

Our paper is related to the literature on estimation of expected stock returns.

The asset-pricing literature has identified more than 300 characteristics that can

predict the cross-section of stock returns (Harvey, Liu, and Zhu 2016). Different

from most of previous research, which examines return forecasting ability of stock

characteristics in isolation, Haugen and Baker (1996) estimate expected returns with

a set of 41 firm characteristics using cross-sectional Fama-MacBeth regressions and

construct decile portfolios based on estimated expected returns. They find that

the low-expected-return (high-expected-return) decile produces significant negative

(positive) raw and factor-adjusted returns. Using the Fama-MacBeth regressions

for 15 relatively long-lived characteristics, Lewellen (2015) shows that the expected

return estimates have strong predictive power for actual returns. Besides, he ana-

lyzes the distribution and accuracy of those estimates. Employing a larger set of

94 firm characteristics, Green, Hand, and Zhang (2017) find that the profitability

of long-short portfolios formed on Fama-MacBeth forecasts varies across size groups

and over time. Surprisingly, the portfolio formed on all-but-tiny stocks yields in-

significant returns after 2003.

Another strand of the return-forecasting literature advocates the use of ma-

chine learning techniques. As mentioned above, seminal studies include KPS, FNW,

GKX2020 and GKX2021. Bianchi, Büchner, Hoogteijling, and Tamoni (2021) con-

duct a comparative analysis of machine learning methods in forecasting bond re-

turns. Relative to these strands of literature, our study differs by focusing on how

return forecasts can be used to optimize portfolios and their interplay with the

estimation of the covariance matrix.

Our study is related to work on covariance matrix estimation. Prior studies

such as Ledoit and Wolf (2003, 2004, 2012, 2017, 2020) and Barroso and Saxena

(2022) propose to shrink the sample estimator to a target. Specifically, Ledoit and

Wolf (2003, 2004) and Barroso and Saxena (2022) use linear shrinkage methods,

whereas Ledoit and Wolf (2012, 2017, 2020) suggest the use of nonlinear shrinkage

methods. To reduce the number of parameters to be estimated, some papers rely

on observable or latent factor models to estimate the covariance matrix (Chan,

Karceski, and Lakonishok 1999; Fan, Fan, and Lv 2008; Fan, Liao, and Mincheva
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2013; De Nard, Ledoit, and Wolf 2021). Built upon the seminal work of Engle (1982)

and Engle (2002, DCC), Hafner and Reznikova (2012) and ELW develop dynamic

estimators for large dimensions. The former estimates the intercept matrix of the

DCC model using a linear shrinkage approach, while the latter estimates that using

a nonlinear shrinkage approach.

Our study contributes to the literature on the covariance matrix by compar-

ing recently proposed methods in a unified setting, in conjunction with forecasting

methods for mean returns. It also assesses the implementability of the resulting

portfolio rules controlling for stock-level and time-varying transaction costs.

Finally, our work contributes to the literature on portfolio management in the

presence of transaction costs. Early work in this field focuses on the optimal allo-

cation between risky and risk-free assets after accounting for proportional trading

costs and proposes a no-trade zone for the optimal policy (Magill, Constantinides

et al. 1976; Taksar, Klass, and Assaf 1988; Davis and Norman 1990). DeMiguel and

Olivares-Nadal (2018) show that the portfolio problem with p-norm trading costs can

be regarded as a robust optimization problem, a regularized regression problem, or

a Bayesian portfolio problem. In particular, turnover penalization with proportional

(quadratic) transaction costs of individual assets is akin to a lasso (ridge) penaliza-

tion. Similarly, Hautsch and Voigt (2019) demonstrate that a mean-variance prob-

lem with quadratic transaction costs is equivalent to a mean-variance problem with

shrinkage estimators in the absence of transaction costs, and a GMV problem with

proportional transaction costs is equivalent to a GMV problem with a regularized

covariance matrix. Novy-Marx and Velikov (2016) examine the after-trading-costs

performance of 31 anomalies in isolation. Barroso and Detzel (2021) investigate the

after-cost profitability of volatility-managed anomaly portfolios. DeMiguel, Martin-

Utrera, Nogales, and Uppal (2020) study how the presence of transaction costs

impacts the number of jointly significant characteristics using the PPP method.

Our study contributes to this literature by considering a comprehensive set of

estimation methods for expected returns and the covariance matrix coupled with

realistic transaction cost estimates. From this emerges a vivid illustration of the

practical relevance of the growing literature on transaction costs and frictions. It

posits that, in the universe of large stocks, managing transaction costs is of cru-

cial importance to obtain any meaningful gains from sophisticated covariance and

expected return estimation methods.
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3 Return Forecasting Methods

3.1 Linear model

3.1.1 Fama-MacBeth (FM) estimator

Two popular linear models used to estimate expected returns are cross-sectional

Fama and MacBeth (1973, hereafter FM) regressions and time-series factor regres-

sions. Specifically, the former forms forecasts using the latest known values of stock

characteristics along with estimated coefficients on characteristics obtained from

historical cross-sectional regressions of returns on lagged characteristics; the latter

makes return predictions using estimated loadings of individual stocks on asset-

pricing factors coupled with historical means of factor premiums. Fama and French

(2020) show that for the same set of characteristics, the FM approach compares

favorably to the factor-model counterpart. Hence, our empirical analysis focuses on

the former.

For each month between m = 1 and m = t, we conduct a cross-sectional regres-

sion of stock excess returns on lagged stock characteristics (including a constant),

which is given by

ri,m = θ0,m +
J∑

j=1

θj,mci,j,m−1 + ϵi,m (3.1)

where ci,j,m−1 denotes the value of characteristic j for stock i at the end of month

m − 1 and ri,m denotes return of stock i in month m. We then compute the time-

series average of estimated coefficients on each characteristic to smooth coefficient

estimates. On one hand, smoothing can absorb time fixed effects. On the other

hand, return forecasts based on smoothed coefficients are less prone to overfitting

than those based on estimated coefficients from a pooled regression or from a single

cross-sectional regression using data from the most recent month. With the latest

known characteristic data as of month t and smoothed coefficient estimates, we form

return forecasts (µ̂t+1|t) as

µ̂t+1|t = θ̃0,t +
J∑

j=1

θ̃j,tci,j,t (3.2)

where θ̃j,t =
1

t

t∑
m=1

θ̂j,m for j = 0, . . . , J, (3.3)

where θ̂j,m denotes the estimated coefficient on characteristic j in month m. Note

that we use an expanding window to obtain the smoothed coefficient estimates.
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3.1.2 Shrinkage FM estimators

To mitigate noise in FM estimates, Lewellen (2015) suggests a shrinkage FM esti-

mator that shrinks FM estimates to their cross-sectional mean, which is given by

µ̃i,t+1|t = (1− s)× CSMean(µ̂i,t+1|t) + s× µ̂i,t+1|t, (3.4)

where µ̂i,t+1|t denotes a FM estimate obtained from Eq. (3.2) and s governs the

shrinkage intensity. Similarly, Barroso and Saxena (2022) propose a general shrink-

age estimator (hereafter Galton) that can be used as a correction on top of any

estimator for expected returns. A Galton-corrected FM estimate (hereafter GFM)

can be expressed as

µ̃i,t+1|t = s0 × 1 + s1 × µ̂i,t+1|t. (3.5)

They implicitly assume a shrinkage target of 1, which is also used in DeMiguel,

Martin-Utrera, and Nogales (2013) and corresponds to the estimated expected return

in the GMV framework.

Both methods estimate (monthly) optimal shrinkage parameters by running a

cross-sectional regression of realized returns on FM estimates. Lewellen (2015) shows

that the estimated slope of FM estimates (β̂FM) is the optimal (in-sample or pseudo

OOS) weight on µ̂i,t+1|t in the sense that the difference in mean-squared-forecast-

errors (MSFE) between the null forecast (CSMean(µ̂i,t+1|t)) and the shrinkage fore-

cast (µ̃i,t+1|t) is maximized at that value (see his footnote 3 for more details).

The GFM approach uses not only β̂FM but also estimated regression intercept

(β̂intercept) to form shrinkage forecasts. Hence, the GFM forecasts minimize (pseudo

OOS) MSFE and have the same mean as realized returns. A GFM forecast can be

reformulated as

µ̃i,t+1|t =
β̂intercept

CSMean(µ̂i,t+1|t)
× CSMean(µ̂i,t+1|t) + β̂FM × µ̂i,t+1|t.

It shows that when
βintercept

CSMean(µ̂i,t+1|t)
= 1− β̂FM , the GFM estimate becomes the shrink-

age estimate of Lewellen (2015).

3.1.3 GFM estimator

We employ the GFM estimator in our main analysis and investigate whether it

can improve the performance of the FM estimator in portfolio optimization con-

texts. The shrinkage parameters of GFM are estimated with the time-series average

of historical monthly shrinkage parameters. That is, we get smoothed shrinkage

estimators by performing cross-sectional Fama-Macbeth regressions of historical re-

alized returns on historical FM forecasts. For each month between month m = 121
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and month m = t (i.e., we require at least 10-year data to form an FM estimate),

we perform a cross-sectional regression, that is,

ri,m = g0,m + g1,mµ̂i,m|m−1 + ϵi,m (3.6)

The estimated regression coefficients are denoted by ĝ0,m and ĝ1,m. We then form

an GFM forecast using the specification:

µ̃i,t+1|t = g̃0,t + g̃j,tµ̂i,t+1|t (3.7)

where g̃j,t =
1

t− 120

t∑
m=121

ĝj,m for j = 0, 1. (3.8)

Besides shrinkage, the Galton procedure can be interpreted as learning from pseudo

OOS forecast errors of the FM estimator, which is akin to the validation procedure

in machine learning models. Moreover, it is more general than Lewellen (2015)’s

shrinkage estimator in the sense that the GFM forecasts are not restricted to be

convex combinations of FM forecasts and a shrinkage target.

3.1.4 Conditional linear latent factor model

KPS propose an asset pricing model in which stock excess returns are assumed to

follow a latent factor structure. The restricted version of their model is given by

ri,t = β(ci,t−1)× ft + ϵi,t, (3.9)

where the intercept is restricted to be zero, ft denotes a K×1 vector of returns on K

latent factors in month t and β(ci,t−1) denotes a 1×K vector of factor loadings. Fac-

tor loadings are defined as a linear combination of observable stock characteristics,

that is,

β(ci,t−1) = cTi,t−1Γβ, (3.10)

where ci,t−1 is a P × 1 vector of characteristics and Γβ denotes a P ×K matrix that

defines mapping from P observable characteristic to K betas (P ≫ K). Different

from Kozak, Nagel, and Santosh (2018) who propose a latent factor model based on

principal component analysis of anomaly returns, KPS use observable stock charac-

teristics as instrumental variables to determine loadings on latent common factors.

So, the model is named as Instrumented Principal Component Analysis (IPCA). A

return forecast implied by the IPCA model is given by

µ̂i,t+1|t = cTi,tΓ̂β,tf̂t+1|t, (3.11)
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where Γ̂β,t denotes the mapping matrix estimated from data up to month t and

f̂t+1|t denotes expected returns of latent factors that are estimated with means of

the estimated factor realizations up to month t.11

3.2 Additive regression model

It is possible that stock characteristics are nonlinearly associated with future re-

turns. FNW account for nonlinearities using an additive regression model, which is

effectively a linear regression model with nonlinearly transformed covariates. FNW

formulate the model as

ri,t = g(ci,t−1; θt,m(·)) =
J∑

j=1

p(ci,t−1,j)
′θ

(j)
t + ϵi,t, (3.12)

where ci,t−1,j denotes the value of characteristic j for stock i in month t − 1, p(·)
denotes a vector of basis functions applied to each characteristic and θ

(j)
t denotes a

vector of coefficients associated with characteristic j.12 To mitigate overfitting result-

ing from series expansion, FNW use the adaptive group lasso of Huang, Horowitz,

and Wei (2010) for model selection and estimation. The corresponding optimization

problem is given by

argmin
θt

1

2N

∥∥r − cT θ
∥∥2

2
+ λ

∑
j

wj

∥∥∥θ(j)t

∥∥∥
2
, (3.13)

where
∥∥∥θ(j)t

∥∥∥
2
=

√∑
s∈Ij

θ2t,s and wj =
1

||θ̃(j)t ||2
. (3.14)

r denotes an N × 1 vector of (demeaned) excess returns; c denotes a J̃ ×N matrix

of (demeaned) characteristics where J̃ = S × J ; S and J denote the number of

spline terms and characteristics, respectively; θt is a J̃ × 1 vector of coefficients; θ̃
(j)
t

denotes the optimal coefficients associated with characteristic j when wj = 1 (i.e.,

the penalty term in ordinary group lasso). λ is a hyperparameter.13 We choose λ

using Bayesian Information Criterion of Schwarz et al. (1978) in line with Yuan and

Lin (2006).

11We appreciate authors of KPS for making their replication code available.
12Following FNW, we use quadratic truncated power basis functions to represent m(·). E.g.,

for quadratic splines with 2 knots at ξ1 and ξ2, according to page 144 of Hastie, Tibshirani, and
Friedman (2009), the truncated power basis functions are p1(x) = 1, p2(x) = x, p3(x) = x2,
p4(x) = (x− ξ1)

2
+, p5(x) = (x− ξ2)

2
+.

13We select the optimal λ from a grid of 100 candidates ranging from 0.0001λmin to λmin where
λmin is the minimum λ giving a solution of all zeroes.
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3.3 Artificial intelligence

3.3.1 “Feed-forward” neural network

Compared to more advanced nonlinear models such as artificial neural networks, ad-

ditive models cannot account for interactions among return predictors. For example,

the return forecasting ability of some characteristics varies across size groups.14 We

follow GKX2020 to use a “feed-forward” neural network. Specifically, it consists

of input, hidden and output layers. For each node in hidden layers, we apply a

nonlinear activation such as rectified linear unit (ReLU) to the aggregated inputs

from the last layer. The objective function is mean squared forecast errors with ℓ1

penalization. To mitigate overfitting, model estimation is accompanied by four reg-

ularization methods: learning rate shrinkage, early stopping, batch normalization,

and ensembles. The candidate hyperparameter values we consider are the same as

those used by GKX2020.15 We use the Adam optimizer to estimate the model.

3.3.2 Conditional autoencoder neural network

Another return forecasting method based on artificial neural networks is the condi-

tional autoencoder (CA) model of GKX2021, which is on top of the IPCA model

and standard autoencoder neutral networks. Under a latent factor structure, it

uses a standard autoencoder for the factor extraction and a “Feed-Forward” neu-

tral network for the estimation of conditional betas. Akin to the IPCA model, the

CA model estimates risk exposures of individual stocks with lagged characteristics.

The model estimates premiums of latent factors with linear combinations of returns

on characteristic-managed portfolios. We use the same model hyperparameters as

GKX2021 with the exception of batch size.16

14As shown in FNW, it is possible to interact each non-size characteristic with firm size in an
additive regression model to account for this effect. However, it is infeasible to account for multiple
interaction effects.

15ℓ1 penalty ∈ {10−5, 10−4, 10−3}; Learning rate∈ {0.001, 0.01}; Batch Size = 10000;
Epochs=100; Patience=5; Ensemble=10.

16Figure 2 of GKX2021 implies that batches should be drawn at monthly level. Specifically,
before each estimation, we convert all observations into three 3-D tensors with dimensions of (#
historical months, # stocks, # features), (# historical months, # managed portfolios, 1), and (#
historical months, # stocks, 1), respectively. Invalid observations are masked (details can be found
on https://www.tensorflow.org/guide/keras/masking_and_padding). The first two tensors
correspond to model inputs (i.e., stock characteristics and characteristic-managed portfolio returns,
respectively), while the last one is model output (i.e. realized risk premium). The batch size we
consider is 1. Since batches are defined over the first dimension, the number of stock observations
a batch has is the number of valid stocks in a month.

15

https://www.tensorflow.org/guide/keras/masking_and_padding


4 Covariance Matrix Estimation

4.1 Sample covariance matrix

The sample covariance matrix is defined as

Σ̂sam
t+1|t =

1

H − 1

H−1∑
h=0

(rt−h − r̄)× (rt−h − r̄)′, (4.1)

where H denotes the length of an estimation window and r̄ denotes a vector of his-

torical means of returns. It is an unbiased estimator for the population counterpart

and also the maximum likelihood estimator under normality. However, when the

number of stocks exceeds the number of observations, it is rank deficient and thus

not invertible. Even if it is not singular, its inverse is a biased estimator for the

inverse of the population counterpart.17 To overcome its shortcomings, the litera-

ture has proposed several alternative estimators using factor models or shrinkage

methods.

4.2 Estimator implied by a factor model

Let’s impose following factor structure on the data-generating process

ri,h = β′
ifh + ϵi,h, (4.2)

where ri,h is the excess return on stock i at time h, βi is a K × 1 vector of factor

loadings for stock i, fh is a K×1 vector of factor returns at time h, and ϵi,h denotes

the residual return. The covariance matrix of residuals is assumed to be a diagonal

matrix with residual variances on its main diagonals. Under this assumption, it is

an exact factor model (EFM) (De Nard, Ledoit, and Wolf 2021). The covariance

matrix implied by an EFM estimated at time t is given by

Σ̂fac
t+1|t = β̂′

tΣ̂f,t+1|tβ̂t + diag(Σ̂ϵ,t+1|t), (4.3)

where β̂t denotes a K ×N matrix of estimated factor loadings at time t, Σ̂f,t+1|t de-

notes the sample covariance matrix ofK factors computed at time t and diag(Σ̂ϵ,t+1|t)

is a diagonal matrix with the sample variances of residuals on its main diagonals..

17Bai and Shi (2011) shows that when the number of stocks is H/2+2, E(Σ̂−1
t+1|t) = 2Σ−1

t+1 under

normality.
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4.2.1 Single index model

When Eq. (4.2) uses the market index only, it corresponds to the single-index model

of Sharpe (1963).18 The conditional covariance matrix implied by the model is

estimated as

Σ̂capm
t+1|t = β̂′

tβ̂tσ̂
2
mkt,t+1|t + diag(Σ̂ϵ,t+1|t), (4.4)

where β̂t is the estimated market beta at time t and σ̂2
mkt,t+1|t is the sample variance

of excess returns on the market portfolio.

4.2.2 Latent factor model

When fh is assumed to be unobservable, Eq. (4.2) is a latent factor model. We

can estimate the corresponding covariance matrix by normalizing the covariance

matrix of factors to an identity matrix. Under this restriction, we can estimate the

covariance matrix by principal component analysis (PCA) or maximum likelihood

method (Bai and Shi 2011). The covariance matrix based on PCA is given by

Σ̂pca
t+1|t = B̂tB̂

′
t + Σ̂ϵ,t+1|t, (4.5)

where B̂t = (λ̂0.5
1,t q̂1,t, ..., λ̂

0.5
K,tq̂K,t), Σ̂ϵ,t+1|t = Σ̂sam

t+1|t − B̂tB̂
′
t, K denotes the number

of principle components (factors), λ̂1,t ≥ λ̂2,t... ≥ λ̂K,t ≥ 0 are the ordered eigen-

values of Σ̂sam
t+1|t and q̂k,t is the corresponding orthonormal eigenvector. To reduce

sampling errors or overcome rank-deficiency, we can restrict Σ̂ϵ,t+1|t to be a diagonal

matrix or impose sparsity on it. For example, Fan, Liao, and Mincheva (2013) apply

soft thresholding to it and the resultant covariance matrix estimator is named as

Principal Orthogonal complEment Thresholding (POET). The estimator has three

desirable properties: 1) it relies on past return data only; 2) it accounts for co-

variances of residual returns; 3) it is always positive definite as long as a proper

thresholding constant is used.

4.3 Linear shrinkage estimators

A linear shrinkage estimator shrinks Σ̂sam
t+1|t to a target. Despite introducing biases,

it can reduce the variability of estimation. The idea can be traced back to the

breakthrough work of Stein et al. (1956) and James, Stein et al. (1961). They show

that shrinking the sample mean towards a target can reduce mean squared errors.

The challenges regarding the estimator lie in how to find a proper target and optimal

shrinkage parameters.

18Since we use the market factor of the CAPM model (Sharpe 1964; Lintner 1965; Black 1972),

we name the estimator as EFMcapm or Σ̂fac
t+1|t if covariances of residuals are assumed to zeroes.
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4.3.1 Linear shrinkage estimators based on Frobenius loss function

A linear shrinkage estimator is of form:

Σ̂shr
t+1|t = γ0Ω + γ1Σ̂

sam
t+1|t, (4.6)

where γ0 and γ1 are shrinkage parameters governing the shrinkage intensity and Ω

denotes a shrinkage target. Ledoit and Wolf (2003) and Ledoit and Wolf (2004)

respectively use the covariance matrix implied by the single index model and that

based on a constant correlation model as shrinkage targets. Both studies assume a

convex combination of Σ̂sam
t+1|t and Ω, and calculate optimal shrinkage parameters by

minimizing the Frobenius norm of the differences between Σ̂shr
t+1|t and the population

counterpart.

4.3.2 Regression-based linear shrinkage estimator

Based on stylized facts that sample estimates of variance, pairwise correlation or

pairwise covariance regress to the mean, Barroso and Saxena (2022) propose shrink-

age estimators for the three variables (a.k.a. Galton estimators). Let XH
k,m−E denote

a sample estimate of variable X (variance, pairwise covariance or pairwise correla-

tion) for stock i calculated from returns over the period month m − E −H − 1 to

month m − E (i.e., an estimation window of H months) and XE
i,m denote a subse-

quent realization calculated from returns over the period month m−E+1 to month

t. The Galton regression model is formulated as

XE
k,m = g0,m + g1,tX

H
k,m−E + ϵk,m. (4.7)

The Galton parameters in month t (g0,t and g1,t) are the time-series averages of g0,m

and g1,m obtained from historical Galton regressions. When estimating the Galton

covariance matrix, we perform the Galton regression for variances and pairwise

correlations in isolation. The Galton covariance estimator is calculated as

Σ̂gal
t+1|t = diag

(
(X̂gal,var

t+1|t )
1
2

)
X̂gal,corr

t+1|t diag
(
(X̂gal,var

t+1|t )
1
2

)
,

where X̂gal,var
t+1|t denotes a vector of Galton variances calculated at the end of month t

and X̂gal,corr
t+1|t denotes the Galton correlation matrix at the end of month t. To ensure

that all diagonal elements of X̂gal,corr
t+1|t are ones, X̂gal,corr

t+1|t is calculated as

X̂gal,corr
t+1|t = (1− g̃0,t − g̃1,t)I + g̃0,t1+ g̃1,tΣ̂

sam,corr
t+1|t ,
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where I is an identity matrix, 1 is an all-ones matrix, and Σ̂sam,corr
t+1|t is the sample

correlation matrix; g̃0,t and g̃1,t denote Galton parameters for pairwise correlation as

of month t. Suppose Σ̂sam,corr
t+1|t is positive definite, X̂gal,corr

t+1|t is positive definite only if

the Galton parameters are non-negative and their sum is less than or equal to one

(except for the scenario of g̃1,t = 0 and g̃0,t = 1). Note that both conditions always

hold in our empirical exercises.

4.4 Nonlinear shrinkage estimator

The spectral decomposition of the sample covariance matrix is given by:

Σ̂sam
t+1|t = Q̂tΛ̂tQ̂

′
t, (4.8)

where Λ̂t is a diagonal matrix whose diagonal elements are ordered eigenvalues,

and Q̂t is an orthonormal matrix whose columns are corresponding eigenvectors.

Based on the decomposition, Ledoit and Wolf (2012) creatively propose a nonlinear

shrinkage estimator

Σ̂nl
t+1|t = Q̂t∆̂tQ̂

′, (4.9)

where ∆t is a diagonal matrix whose elements are functions of eigenvalues of Σ̂sam,corr
t+1|t ,

that is, δi = ϕ(λi) where ϕ is a shrinkage function that pushes up relatively small

eigenvalues and pushes down relatively large eigenvalues. On one hand, adjusting

eigenvalues properly can mitigate the overfitting of Σ̂sam
t+1|t. On the other hand, it

is always positive definite even when Σ̂sam
t+1|t is singular. Based on random matrix

theory, Ledoit and Wolf (2012) propose to compute δi numerically, but it is com-

putationally intensive. Instead, we use the analytical formula of Ledoit and Wolf

(2020) to get Σ̂nl
t+1|t. LW2020 show that the analytical method is typically 1000

times faster than the numerical counterpart without hurting accuracy.

4.5 Dynamic covariance estimator

The last estimator we consider is a dynamic covariance matrix estimator in the spirit

of Engle (1982) and Engle (2002). Engle, Ledoit, and Wolf (2019) propose a dynamic

estimator for a large number of assets. They first model conditional variances using

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH), that is,

σ2
i,h = ωi + aiϵ

2
i,h−1 + biσ

2
i,h−1 (4.10)

where (ωi, ai, bi) are GARCH(1,1) parameters for stock i, and ϵ2i,h−1 denotes stock

i’s (demeaned) return at time h−1. The model is estimated from daily return data.

They then model dynamics of the correlation matrix using the multivariate
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GARCH (1,1), that is,

Qh = Ω+ ανh−1ν
′
h−1 + βQh−1. (4.11)

where νh is a vector of devolatized residuals calculated as νh = D−1
h ϵh and Dh de-

notes a diagonal matrix whose main diagonal consists of fitted conditional volatility.

Instead of estimating Ω that has N(N+1)
2

unknown elements, ELW use the dynamic

constant correlation (DCC) model of Engle (2002) in which Ω is replaced with

(1 − α − β)C. C is the unconditional correlation matrix of νh, which can be esti-

mated as Ĉ = 1
H

∑H
t=1 νhν

′
h. However, the DCC model is not compatible with a large

dimension. As argued by ELW, on one hand, it is not always feasible to estimate

a DCC model for large dimensions. On the other hand, the DCC matrix for large

dimensions tend to deliver unfavorable performance. The ELW estimator addresses

the two issues by using the composite-likelihood method of Pakel, Shephard, Shep-

pard, and Engle (2020) and applying the numerical nonlinear shrinkage method of

LW2012 to Ĉ, respectively. Again, we use the analytical formula of LW2020 to

shrink Ĉ nonlinearly in our empirical exercises.

5 Empirical Results

5.1 Data

5.1.1 Investment universe

At the end of each calendar year, we first select NYSE, AMEX, and NASDAQ

common stocks (CRSP share code of 10 or 11) with a full return history over the

past 60 months and a full return history over the subsequent 12 months. We then

select the 500 largest stocks by market capitalization. These account for 77% of total

market cap on average. The investment universe keeps unchanged for the following

12 months. We build the sample using the monthly stock file from the Center for

Research in Security Prices (CRSP). Our sample selection method is standard in

the literature (e.g. LW2017, DLW and Barroso and Saxena (2022)).19 Our OOS

period begins in January 1987 and ends in December 2020.20

19The restriction that stocks must have valid observations over following 12 months is subject to
look-ahead bias. However, as mentioned in LW2017, this forward-looking restriction is commonly
applied in the portfolio optimization literature.

20Our start date reflects the need of having enough historical data to implement machine learning
methods and the Galton correction. It is the same start date as in closely related studies (Gu,
Kelly, and Xiu 2020, 2021; Avramov, Cheng, and Metzker 2022).
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5.1.2 Stock characteristics

We use the same set of stock characteristics as FNW and strictly follow their pro-

cedure to construct a characteristic dataset.21 Our dataset includes all common

stocks traded on NYSE, AMEX or NASDAQ. We obtain stock market data from

CRSP and accounting information from the Compustat Annual Fundamental Files.

The stock market data are assumed to be publicly available immediately after be-

ing generated, while the accounting data for a fiscal year ending in calendar year

t − 1 are assumed to be publicly observable in June of calendar year t. A stock

is defined as a large stock if its market value is above the NYSE median at the

beginning of a month (Lewellen 2015). Our characteristic data begin in July 1964

and end in December 2020. In line with Freyberger, Neuhierl, and Weber (2020),

Kelly, Pruitt, and Su (2019), Gu, Kelly, and Xiu (2020), Gu, Kelly, and Xiu (2021),

and Chen, Pelger, and Zhu (2020), we use ranked-normalized characteristics to form

return forecasts. See Appendix A for details about data transformation and missing

data handling. Table A1 presents a list of 62 characteristics by category. Note that

some characteristics have weak predictive power for returns over the full sample pe-

riod or that the predictive power of some characteristics concentrates in small- and

micro-cap stocks. We do not remove such characteristics to capture the idea that an

unsophisticated investor ex ante does not know whether a stock characteristic has

significant predictive power or whether there exist interaction effects between firm

size and a characteristic in estimating expected returns.

[Insert Table A1 near here]

5.2 Statistical inference

We use the i.i.d. studentized bootstrap method of Ledoit and Wolf (2008) and

Ledoit and Wolf (2011) to compute a two-sided p-value for the null hypothesis of

equal variances or (net) Sharpe ratios between an investment strategy and the value-

weighted portfolio.22 We resample individual pairs of returns from observed pairs

with replacement to get bootstrap data. A studentized test statistic of the difference

in Sharpe ratios or natural logarithm of variances for the original data is given by23

d =
|∆̂|
s(∆̂)

,

21We are grateful to Dr. Michael Weber for sharing his SAS code used to generate characteristic
data.

22DeMiguel et al. (2020) also use this method to test the difference of Sharpe ratios between
their OOS regularized PPP portfolios and a benchmark portfolio

23Note that Ledoit and Wolf (2008) and Ledoit and Wolf (2011) use a symmetric studentized
bootstrap confidence interval.
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where ∆̂ denotes difference of Sharpe ratios or (log) variances and s(∆̂) denotes its

standard error computed using the delta method (see Appendix B for more details

about the calculation of standard errors).

For the bootstrap data, the centered studentized statistic estimated from the

mth bootstrap sample is given by

d̃∗,m =
|∆̂∗,m − ∆̂|
s(∆̂∗,m)

,

where ∆̂∗,m denotes the difference of Sharpe ratios or (log) variance between two

strategies for the mth bootstrap sample and s(∆̂∗,m) denotes its standard error com-

puted using the delta method. The two-sided p-value for the null hypothesis is given

by

p =
I(d̃∗,m ≥ d) + 1

M + 1
, (5.1)

where I(·) represents an indicator function and M is the number of bootstrap re-

samples.

5.3 Transaction costs

The turnover of strategy j (TOj
t) at the end of month t is defined as

TOj
t =

∑
i

|wj
i,t − w̃j

i,t−1|, (5.2)

where wj
i,t is the weight of stock i in portfolio j after rebalancing at the end of month

t and w̃j
i,t−1 is the weight of stock i in portfolio j before rebalancing at the end of

month t, that is,

w̃j
i,t−1 =

wi,t−1(1 + ri,t)∑
i w

j
i,t−1(1 + ri,t)

.

The sum of weights after rebalancing is always 1. Asset i can be a risk-free asset

that is assumed to incur zero transaction costs.24 When computing turnover as well

as transaction costs of strategy j incurred at the end of month t, we consider all

stocks that are used to form strategy j at the end of month t or at the end of month

t − 1. That is, if stock i that is not used in strategy j at the end of month t − 1

is part of the strategy at the end of month t, w̃i,t−1 = 0; if stock i is included in

strategy j at the end of month t − 1 but excluded from the strategy at the end of

month t, wj
i,t = 0.

We define the net-of-costs return and Sharpe ratio in the same way as Brandt,

24Hence, to better reflect potential transaction costs incurred, the portfolio turnover reported in
our tables does not take the turnover of the risk-free asset into account.
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Santa-Clara, and Valkanov (2009, see their Equation (19)) and Hautsch and Voigt

(2019, see their Equations (41) through (44)). The net-of-costs return of portfolio j

in month t+ 1 is defined as

rj,nett+1 =
∑
i

wj
i,t × ri,t+1 −

∑
i

κi,t|wj
i,t − w̃j

i,t−1|, (5.3)

where the first part is gross return of portfolio j in month t+1 and the second part

captures the trading costs incurred to rebalance from w̃j
i,t−1 to wj

i,t at the end of

month t. Net-of-costs Sharpe ratio is given by

SRj,net =
Mean(rj,nett − rft)

Std(rj,nett − rft)
,

where rft is the risk-free rate in month t.

We use one half of Chung and Zhang (2014)’s quoted spread supplemented with

Abdi and Ranaldo (2017)’s CHL method to estimate effective one-way spreads of

stocks (κi,t). See Appendix C for details about the estimation of κi,t. Fig. 1 depicts

the dynamics of monthly minimum, maximum and average κi,t for the top-500 stocks

by market value over the OOS period. The figure shows that our estimates can

reflect both cross-sectional and time-series variation in effective spreads. Moreover,

our estimates accurately reflect major liquidity-related market events. For example,

average spreads become significantly tighter after decimalization in 2001.

[Insert Figure 1 near here]

5.4 Forecasting performance of expected return estimators

In this section, we examine OOS predictive performance of 10 expected return esti-

mators including

• SAMmean: the average return over the past 60 months.

• GALmean: the Galton-corrected sample mean.

• FMlarge and GFMlarge: ordinary and Galton-corrected Fama-MacBeth esti-

mators as defined in Section 3.1.1 and Section 3.1.3, respectively. Subscript

“large” indicates that Fama-MacBeth regressions are implemented using large-

cap stocks only.

• FMwls and GFMwls: ordinary and Galton-corrected Fama-MacBeth estima-

tors as defined in Section 3.1.1 and Section 3.1.3, respectively. Subscript “wls”
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indicates that Fama-MacBeth regressions are implemented using weighted

least squares with market capitalization as weights.

• AGLASSOlarge: an estimator based on the nonparametric model of FNW.

We first perform model/characteristic selection for large-cap stocks using data

up to the beginning of the OOS period. At the end of each formation month

during the OOS period, we estimate the model on the selected characteristics

using data of large-cap stocks over the past 120 months. Then, we use the

estimated coefficients along with the latest values of selected characteristics to

predict one-month-ahead returns. The adaptive group lasso, which is described

in Section 3.2, is used for both characteristic selection and model estimation.25

• IPCAK=5,large: return forecasts implied by the the restricted IPCA model

with 5 latent factors, which is introduced in Section 3.1.4. We use data of large-

cap stocks to perform recursive backward-looking estimation of the model.

• CA2K=5: the conditional autoencoder (CA) model described in Section 3.3.2.

We use the CA model consisting of 2 hidden layers and 5 latent factors. We

follow GKX2021 to update model parameters yearly (at the end of June). We

use a 12-year rolling validation window and an expanding estimation window,

that is, we enlarge the training data by one year every time we refit.26

• NN3: the “Feed-Forward” Neural Network (NN). We choose the best per-

forming NN architecture in GKX2020, which consists of three hidden layers

with 32, 16 and 8 neurons, respectively. We update model parameters at the

end of June. The definitions of training and validation samples are the same

as those for the CA2K=5 model.

Except for SAMmean and GALmean, which use daily returns over the past 60 months

to form return forecasts, all estimators exploit stock characteristics in return fore-

casting.27 Since CA2K=5 and NN3 already account for characteristic interactions by

design, including the effect of size on other characteristics, we do not restrict the

25We use R package “oem” developed by Xiong, Dai, Huling, and Qian (2016) to conduct model
selection and estimation.

26The numbers of hidden layers and latent factors are hyperparameters. We could dynamically
find the optimal values of the two hyperparameters using a validation procure as we do for other
hyperparameters; however, it is computationally intensive to do so. Hence, we follow prior studies
to use fixed values over the entire OOS period. The 5-factor model is the specification examined in
all empirical applications of KPS and GKX2021. Also, it is in line with the 5-factor model of Fama
and French (2015). The CA2K=5 model is examined in all empirical exercises of GKX2021 and
examined by Avramov, Cheng, and Metzker (2022) as well. In addition, the lengths of estimation
and validation windows are hyperparameters. We follow GKX2020 to use a validation window of
12 years. We fit the CA2K=5 and NN3 models using TensorFlow 2.6.1 via Python.

27For estimates of expected returns and covariance matrices computed from daily data, we
convert them to monthly estimates in portfolio optimization.
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sample to large-cap stocks or use value-weighted forecast errors when estimating

their parameters.

We follow the recent literature (e.g., KPS; FNW; GKX2020; GKX2021) to mea-

sure the forecasting performance of an expected return estimator for expected re-

turns using the OOS predictive R-squared, which is defined as

R2
oos = 1−

∑
(i,t)∈oos(ri,t+1 − µ̂i,t+1|t)

2∑
(i,t)∈oos r

2
i,t+1

. (5.4)

It compares model predictions (µ̂i,t+1|t) against a naive forecast of zero and pools

prediction errors across stocks and over time. Table 1 shows R2
oos of each estimator

for stocks included in our investment universe.

[Insert Table 1 near here]

Consistent with prior studies, SAMmean is inferior to a naive forecast of zero.

However, as shown in Barroso and Saxena (2022), the predictive performance of

SAMmean can be dramatically improved by learning from its own past OOS forecast

errors. GALmean achieves an R2
oos of 0.50%, which is 2.25% higher than that of

SAMmean and outperforms the naive counterpart. The forecasting performance of

GALmean is comparable to that of the two Fama-MacBeth estimators: FMlarge and

FMwls. Shrinking Fama-Macbeth forecasts using the Galton correction improves

predictions. GFMlarge and GFMwls raise R2
oos to 0.61% and 0.64%, respectively.

The last four rows report the predictive performance of four machine learning

methods. AGLASSOlarge produces an R2
oos of 0.25%. This suggests that accounting

for nonlinearities through basis expansions of predictors can result in deterioration

of predictive performance compared to the Fama-MacBeth counterparts.28 The two

methods based on a conditional latent factor structure (IPCAK=5,large and CA2K=5)

exhibit similar forecasting performance with R2
oos of 0.58% and 0.61%, respectively.

NN3 is the best performing model with an R2
oos of 0.66%.

The evidence suggests that all alternative estimators we consider provide superior

forecasting performance compared to sample means. Also, despite achieving higher

R2
oos than the two ordinary Fama-MacBeth estimators, complex methods such as

CA2K=5 and NN3 are not necessarily superior, at least for large-cap stocks, since

they rely on hyperparameters, which may reflect informed choices after looking at

the data, and have relatively high computational costs.

28GKX2020 examine the predictive performance of an additive regression model expanded by
quadratic splines in conjunction with the group lasso and Huber loss. They report that R2

oos for
the top-1000 stocks by market value over the 1987-2016 period is 0.14%.

25



5.5 Mean-variance efficient portfolio

Next, we explore whether the superior forecasting performance of the alternative

estimators relative to the sample mean can translate into better OOS performance

of the (conditional) mean-variance efficient (MVE) portfolio. We follow Kirby and

Ostdiek (2012) to assume that at the end of month t, an investor with mean-variance

preferences selects a N×1 vector of risky-asset weights to maximize his/her expected

utility. The problem is formulated as

max
wt

w′
tµ̂t+1|t −

γ

2
w′

tΣ̂t+1|twt, (5.5)

where µ̂t+1|t denotes a vector of estimates of the expected excess returns on the

N risky assets, Σ̂t+1|t denotes an estimate of the covariance matrix of the excess

risky-asset returns and γ denotes the risk aversion coefficient. The investor invests

1 −
∑

i wi,t in the risk-free asset at time t. The risk-free asset is assumed to have

identical borrowing and lending rates as well as zero transaction costs. We assume

the investor estimates expected returns and the covariance matrix independently.

The problem has an analytical solution:

ŵt =
Σ̂−1

t+1|tµ̂t+1|t

γ
, (5.6)

which is known as risky-asset weights in the complete portfolio.

5.5.1 Global Minimum Variance portfolio

When µ̂t+1|t is proportional to an all-ones vector (i.e., all stocks are expected to earn

the same rate of return) and funds are fully invested in risky assets (
∑

iwi,t = 1),

the resultant optimized portfolio is the Global Minimum Variance (GMV) portfolio

whose weights are given by

ωGMV
t =

Σ̂−1
t+1|t1

1′Σ̂−1
t+1|t1

. (5.7)

Since a GMV portfolio is constructed using an estimated covariance matrix only,

its OOS standard deviation is a standard measure in the literature for the quality

of a proposed estimator. Table 2 presents the comparison of covariance matrix

estimators introduced in Section 4 in terms of the OOS standard deviation of their

corresponding GMV portfolios as well as other portfolio performance metrics.

SAMcov: the sample covariance matrix.

EFMcapm: the covariance matrix implied by the single-index model (CAPM).

GALcov: the Galton covariance matrix.

POET: the covariance matrix implied by a factor model with 5 principal com-
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ponent factors. The covariance matrix of residuals is estimated using the POET

method of Fan, Liao, and Mincheva (2013).29

LWcapm: the LW2003 estimator, which linearly shrinks SAMcov towards EFMcapm.

LWcc: the LW2004 estimator, which linearly shrinks SAMcov to the constant-

correlation model.

LWnl: the LW2020 estimator, which nonlinearly shrinks SAMcov through ad-

justment of its eigenvalues.

DCCnl: a multivariate-GARCH estimator proposed by ELW who combines the

DCC-GARCH model with LWnl. We use the “average-forecasting” method of DLW

to forecast the one-month-ahead covariance matrix.

With the exception of EFMcapm, which is estimated using monthly returns over

the past 60 months, all estimators are based on daily returns over the past 60 months.

[Insert Table 2 near here]

For comparison, we also consider two naive strategies: the value-weighted (VW)

and equal-weighted (EW) portfolios. The column labeled σ̂ presents the OOS stan-

dard deviation (% per year) of each strategy. As expected, all GMV portfolios

outperform the two naive strategies in terms of σ̂. Their outperformance over the

VW strategy is statistically significant. So, estimated covariance matrices are use-

ful to reduce risk in real time. The best performing estimator is DCCnl with an

annualized volatility of 10.18%.

An alternative test of the success of a covariance matrix estimate is its ability

to forecast the risk of (optimal) portfolios (Barroso and Saxena 2022). The column

labeled σ̂
σ̄exp

presents the risk accuracy of each method, which is measured by the

ratio of ex post standard deviation to its average ex ante estimate. All estimators

underestimate the risk of the GMV portfolio out of sample. GALcov has the low-

est ratio ( σ(r)
σ̄exp(r)

= 1.38), whereas EFMcapm dramatically underestimates the risk (
σ̂

σ̄exp
= 5.60).

The next three columns present sum of negative weights, active share and bankruptcy

rate of each portfolio, respectively. Unlike the GMV portfolio, the VW and EW

portfolios do not require short sales. The GMV portfolio estimated using SAMcov

deviates most from the passive counterpart with an active share of 334.05%. No-

tably, no GMV portfolio goes bankrupt during the OOS period.

Despite the fact that the objective of the GMV optimization is only to minimize

portfolio risk, all GMV portfolios, except for those based on SAMcov and EFMcapm,

yield higher Sharpe ratios than the VW strategy. But these differences are all

statistically insignificant. While GMV strategies based on SAMcov and EFMcapm

29We are grateful to the authors for making their Matlab code available to us.
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produce slightly lower Sharpe ratios than the VW strategy, their underperformance

is also statistically insignificant.

Compared to the VW portfolio, the GMV portfolio requires more frequent re-

balancing. Not surprisingly, all GMV portfolios have higher turnover than the naive

counterparts. Among the eight estimators, EFMcapm has the lowest GMV turnover.

The final column displays the net-of-costs Sharpe ratio (NSR) of each strategy. All

GMV portfolios underperform the VW portfolio in terms of NSR though the differ-

ences are statistically insignificant at the 5% level. The GMV strategy using GALcov

produces the highest NSR of 0.53.

5.5.2 Tangency portfolios

In this section, we study the OOS performance of the tangency portfolio (hereafter

TP) constructed using different combinations of estimators for expected returns

and the covariance matrix. The TP consists of risky assets only. Its weights are

effectively relative risky-asset weights in the complete portfolio (hereafter CP), which

are given by

wtan
t =

Σ̂−1
t+1|tµ̂t+1|t

1′Σ̂−1
t+1|tµ̂t+1|t

. (5.8)

Following DeMiguel, Garlappi, and Uppal (2009), if a TP is conditionally inefficient

(i.e. the denominator is negative), we assume the investor invest −100% in the TP

and 200% in the risk-free asset. The mean-variance analysis suggests that, without

estimation risk, the Sharpe ratio of the TP is equal to that of any CP formed using

the same set of stocks.30 However, the two types of MVE strategies can produce very

different OOS results in the presence of not only estimation risk but also transaction

costs. If 1′Σ̂−1
t+1|tµ̂t+1|t is close to zero, Eq. (5.8) tends to generate extreme TP

weights. On one hand, the CP is immune from this problem if γ is set properly (e.g.,

γ = 5). On the other hand, if γ is substantially less than 1
′Σ̂−1

t+1|tµ̂t+1|t, the CP will

be highly leveraged (i.e., put large negative weights on the risk-free asset) resulting

in considerably high OOS standard deviation and return. In Table 3 and Table 4,

we report the OOS performance of the TP strategy.31 The OOS performance of the

CP strategy for γ = 5 is reported in Table A2 and Table A3.

Since the mean-variance optimization is more sensitive to estimation error in

expected returns than that in covariances, our empirical applications focus on (pair-

wise) combinations between a set of 10 return forecasting methods considered in

30The TP can be regarded as the CP of an investor with γ = 1
′Σ̂−1

t+1|tµ̂t+1|t.
31DeMiguel, Garlappi, and Uppal (2009) and Barroso and Saxena (2022) focus on the OOS

performance of the TP as well. Jagannathan and Ma (2003) study the TP rather than the CP in
the empirical application considering the estimation of expected returns.
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Table 1 and a set of 4 (of eight) covariance matrix estimators.32 The first two co-

variance matrix estimators are EFMcapm and SAMcov, both of which are commonly

used in the literature and compatible with large dimensions. The other two esti-

mators are GALcov and DCCnl. As shown in Table 2, they are the best performers

in terms of the realized risk of the GMV portfolio. In addition, GALcov is the best

performing method in forecasting risk of the GMV portfolio.

[Insert Table 3 near here]

Panel B of Table 3 presents the OOS performance of the TP strategies imple-

mented using EFMcapm in combination with different return forecasting methods.

All combinations substantially underestimate the risk of the TP with σ̂
σ̄exp

ranging

between 4.42 and 17.13 and overestimate the profitability of the TP as shown in the

column labeled µ̂
µ̄exp

, which denotes the ratio of the average realized return over the

average expected return.

The three TP strategies implemented using the Galton-corrected return forecasts

(GALmean, GFMlarge and GFMwls) and the two using expected returns implied by

the conditional latent factor model (IPCAK=5,large and CA2K=5) never go bankrupt

during the OOS period. The bankruptcy of other TP strategies can be attributable

to the instability of |1′Σ̂−1
t+1|tµ̂t+1|t|. For example, the TP combining FMwls with

EFMcapm has a |1′Σ̂−1
t+1|tµ̂t+1|t| of 0.13 at the end of 1990:10 resulting in a cross-

sectional standard deviation of portfolio weights of 1320%. The two TP strategies

implemented using the two GFM methods (together with EFMcapm) can achieve

higher Sharpe ratios (1.05 and 1.06) than the VW strategy and their outperfor-

mance is statistically significant. The TP obtained using GALmean, IPCAK=5,large or

CA2K=5 (in combination with EFMcapm) can achieve a comparable or even higher

Sharpe ratio than the VW counterpart; however, the difference is not statistically

significant.

The performance of the TP strategies deteriorates in the presence of transaction

costs. The two TP strategies combining EFMcapm with GALmean and GFMwls have

the lowest turnover (TO = 22.45% per month) and highest net-of-costs Sharpe ratio

(NSR = 0.60), respectively. Of the 10 TP strategies, only two have higher net-

of-costs Sharpe ratios than the VW strategy. Both are implemented using GFM

estimators for expected returns. However, their outperformance is not statistically

significant.

In Panel C, we use SAMcov in place of EFMcapm to estimate the covariance matrix.

As before, the TP optimizer displays an optimistic bias, overestimating returns and

underestimating risk. Compared to the TP strategies based on EFMcapm, those

32For the sake of brevity, we do not report the OOS performance of all 80 combinations. Results
for the remaining combinations are available upon request.
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based on SAMcov tend to have more optimistic expectations for risk. Consistent

with the finding in the literature, even with daily data, plain Markowitz portfolio

is dismal with a bankruptcy rate of 0.74%, a turnover of 11560.70% and a Sharpe

ratio of 0.02. Of the 10 TP strategies, only three never suffer from bankruptcy.

The TP strategies combining SAMcov with GFMlarge and IPCAK=5,large outperform

the VW strategy by statistically and economically significant margins with Sharpe

ratios of 1.64 and 1.15, respectively. The enormous realized risk of the TP combining

SAMcov with GFMwls is mainly caused by extreme allocations at the end of 2010:06.

|1′Σ̂−1
t+1|tµ̂t+1|t| then is just 0.01 leading to a large cross-sectional standard deviation

of weights (16376%). The “TO” column shows that all TP strategies using SAMcov

have higher turnover than their EFMcapm counterparts. More importantly, all of

them deliver lower net-of-costs Sharpe ratios than the VW strategy.

[Insert Table 4 near here]

In Table 4, we examine the TP strategies obtained using combinations of the

same 10 expected return estimators with GALcov (Panel B) or DCCnl (Panel C).

When combined with GALcov and DCCnl, GFMlarge, GFMwls and IPCAK=5,large com-

pare favorably to others. The 6 TP strategies based on them can deliver remarkable

Sharpe ratios ranging between 1.14 and 1.65 which are significantly higher than the

Sharpe ratio attained by the VW strategy. So, estimation error can be overcame.

Still, after accounting for transaction costs, even high-quality estimators for covari-

ance matrices do not contribute much to the OOS performance of the TP. Only

the TP constructed using GFMlarge coupled with GALcov has a higher net-of-costs

Sharpe ratio than the VW strategy (0.65 vs 0.57), but that difference is statistically

insignificant.

Overall, our results suggest that it is possible to improve the performance of

the sample-based TP (a.k.a plain Markowitz portfolio) by using more sophisticated

estimators. GFMlarge is the most robust return forecasting method in the sense that

all of the four TP strategies related to it significantly outperform the VW strategy

in terms of the Sharpe ratio. However, after accounting for transaction costs, no TP

can outperform the VW counterpart regardless of optimization inputs.

5.5.3 Risk targeting

The previous section suggests that the instability of the denominator of the TP

formula coupled with excessive optimism of the mean-variance optimizer can expose

the optimized portfolio to high bankruptcy risk. Similarly, high leverage along with

the excessive optimism can render the CP prone to bankruptcy and unimplementable
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in practice.33 In the TP analysis, we assume the investor always executes the TP

strategy regardless of how extreme the optimal allocations are. In this section, we

build on Kirby and Ostdiek (2012) and Bessler and Wolff (2015), and assume the

investor constrains the mean-variance optimizer by targeting the estimated variance

of the VW strategy.34 That is, we set an upper bound for the expected portfolio

risk in Eq. (5.5), which is given by

max
wt

w′
tµ̂t+1|t −

γ

2
w′

tΣ̂t+1|twt (5.9a)

subject to w′
tΣ̂t+1|twt ≤ σ2

vw,t+1|t = ŵ′
vw,tΣ̂t+1|tŵvw,t. (5.9b)

When the constraint is binding, the expected risk of the optimized portfolio equals

the expected risk of the VW portfolio. We refer to the constrained MVE portfolio

from Eq. (5.9) as the Risk-Targeted (RT) portfolio. Note that we keep γ
2
w′

tΣ̂t+1|twt

in the objective function so that the CP is still the optimal choice when its estimated

variance is less than the risk target.

[Insert Table 5 near here]

Table 5 presents the OOS performance of the RT portfolios constructed using

combinations of 10 return forecasting methods with EFMcapm (Panel B) or SAMcov

(Panel C). We adopt a γ of 5. The average volatility of the VW portfolio esti-

mated ex ante using EFMcapm and SAMcov are 14.59% and 17.40%, respectively.

Like the TP and CP strategies, the RT strategy tends to be overly optimistic ex

ante, as shown in the columns labeled σ̂
σ̄exp

and µ̂
µ̄exp

. Compared to the CP and TP

counterparts, the RT strategies are less prone to bankruptcy. Of the 20 portfolios,

only the one combining IPCAK=5,large with EFMcapm goes bankrupt in one month,

Except for it, all RT portfolios formed using return forecasting methods that ex-

ploit stock characteristics attain higher Sharpe rations than the VW counterpart

and the differences are statistically significant. However, turnover can erode their

advantages in the presence of trading costs. Only three RT strategies can produce

higher net-of-costs Sharpe ratios than the VW strategy, but their outperformance

is economically small (max NSR = 0.68) and statistically insignificant.

33As shown in Table A2 and Table A3, all CP strategies deliver high turnover and most of them
have non-zero bankruptcy rates. Specifically, of the 40 CP strategies, none can achieve a higher
after-cost Sharpe ratio than the VW strategy and only 4 never go bankrupt, all of which use the
Galton covariance matrix.

34We use the estimated variance of excess returns on the VW portfolio as the upper bound of
portfolio risk. The risk target is computed using an estimated covariance matrix and weights of
the VW portfolio at the end of month t, both of which are ex ante information. Bessler and Wolff
(2015) also formulate the mean-variance investment problem using a quadratic utility function with
an upper variance bound. Similarly, Kirby and Ostdiek (2012) target the estimated expected excess
return of the equal-weighted portfolio when constructing their optimal constrained portfolios.
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[Insert Table 6 near here]

Table 6 presents the OOS performance of the RT strategies executed using the

two improved covariance matrix estimators: GALcov (Panel B) and DCCnl (Panel

C). The average volatility of the VW portfolio estimated ex ante using GALcov and

DCCnl are 16.75% and 16.06%, respectively. As before, only one (out of twenty

RT portfolios) has a non-zero bankruptcy rate. Notably, all 16 RT strategies im-

plemented using characteristic-based return forecasts outperform the VW portfolio

in terms of the Sharpe ratio and their outperformance is economically large, with

Sharpe ratios as high as 2.04, and statistically significant. The RT portfolios con-

structed using GALcov deliver reasonable volatility and have lower σ̂
σ̄exp

than those

formed using the other three covariance matrix estimators regardless of whichever

mean estimator is used. However, like all strategies examined before, all 20 RT

strategies in Table 6 fail to outperform the VW counterpart in a significant way

after accounting for transaction costs. This contrast is meaningful from an eco-

nomic perspective: before costs are considered, several strategies achieve OOS per-

formance that seem to violate any plausible “good deal” boundaries (Cochrane and

Saa-Requejo 2000), and hence appear as near-arbitrage opportunities; but none out-

performs significantly a simple value-weighted benchmark after costs. Therefore, a

representation of the risk-return trade-off available to investors in the market is

incomplete if it fails to account for such costs.35

5.5.4 Transaction cost management

Given the unfavorable net-of-costs Sharpe ratios earned by the 3 MVE strategies: the

TP, CP and RT strategies, we next examine whether accounting for transaction costs

ex ante can improve the after-cost performance of the mean-variance optimization.

We incorporate the (expected) transaction costs into the optimization problem of

the RT portfolio (Eq. (5.9)), which is given by

max
wt

w′
tµ̂t+1|t −

∑
i

κi,t|wi,t − w̃i,t−1| −
γ

2
w′

tΣ̂t+1|twt (5.10a)

subject to w′
tΣ̂t+1|twt ≤ σ2

vw,t+1|t = ŵ′
vw,tΣ̂t+1|tŵvw,t. (5.10b)

Statistically, the turnover regularization term,
∑

i κi,t|wi,t − w̃i,t−1|, acts similarly

as lasso penalization on portfolio weights with effective one-way spreads of stocks

governing the regularization intensity. We refer to the resultant optimized portfolio

35In a very recent paper, of August 2022, Jensen, Kelly, Malamud, and Pedersen (2022) propose
the concept of “implementable efficient frontier” as the after-cost frontier available to investors.
Our results so far, obtained with a broad range of return and covariance forecasting methods,
would suggest that feasible frontier is approximately spanned by the value-weighted portfolio.
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as the transaction-cost-managed RT (TCM-RT) strategy. The main reason why we

keep the risk upper bound is that it can prevent the optimized portfolio from being

highly leveraged when the market is liquid (i.e., κi,t is close to zero). In addition, the

risk constraint can be interpreted as a generalized ridge penalization on portfolio

weights.36

The optimization problem is a convex quadratically constrained quadratic pro-

gram (QCQP). We follow Chen, Lezmi, Roncalli, and Xu (2019) to rewrite trans-

action cost of each stock as κi,t∆w+
i,t + κi,t∆w−

i,t where ∆w−
i,t and ∆w+

i,t respec-

tively denote the sale and purchase of stock i at time t. By definition, wi,t =

w̃i,t−1 +∆w+
i,t −∆w−

i,t. We rewrite Eq. (5.10) as

min
θt

γ

2
θ′tB

∗
t θt − θ′tMt (5.11a)

subject to θ′tB
∗
t θt ≤ σ2

vw,t+1|t, (5.11b)

∆w+
t ,∆w−

t ≥ 0n (5.11c)

Aθt = w̃t−1 (5.11d)

where θt =

 wt

∆w+
t

∆w−
t

, Mt =

µ̂t+1|t

−κt

−κt

, A =
[
In×n −In×n In×n

]
and

B∗
t =

Σ̂t+1|t 0n×n 0n×n

0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

. B∗
t is a positive semi-definite matrix, and therefore

the optimization problem is a convex QCQP with 3n variables, which can be solved

using the interior-point method of Nesterov and Todd (1997) with great efficiency.37

The estimated optimal portfolio choice is given by ŵt = (In×n,0n×n,0n×n)θ̂t. Since

36Table A4 and Table A5 report the OOS performance of transaction-cost-managed (TCM) port-
folios without targeting the estimated expected risk of the VW portfolio in optimization. They
show that transaction cost management alone is not adequate to prevent the mean-variance opti-
mizer from generating highly leveraged portfolios though most of the TCM portfolios do have lower
turnover than their complete counterparts. The undesirable performance of the TCM strategies
can be partially attributable to the improvement in market liquidity, which in turns results in tight
effective spreads of the large-cap stocks. With κi,t being closer to zero, the effects of turnover regu-
larization on weights become weaker, and thus the optimizer tends to deliver portfolios like the CP.
Note that our investment problem is slightly different from that of Hautsch and Voigt (2019). They
implement transaction-cost-managed mean-variance strategies using risky assets only. Instead of
using a budget constraint (BC), we use a variance constraint so that our optimized portfolios tend
to be less volatile and more comparable to the passive strategy. See Table A6 and Table A7 for
the OOS performance of the TCM portfolios constructed using risky assets only (TCM-BC).

37Note that any convex QCQP can be reformulated as a second-order cone program (a.k.a conic
quadratic optimization). We solve the problem using the academic version of MOSEK (2022) via
Python package CVXPY of Diamond and Boyd (2016) and Agrawal, Verschueren, Diamond, and
Boyd (2018). CVXPY can formulate Eq. (5.10) in conic form and send the resulting conic problem
to MOSEK (2022). Another feature of CVXPY is that it can check convexity and feasibility of an
optimization problem.
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the optimization problem is convex, the solution is globally optimal.

[Insert Table 7 near here]

Table 7 shows the OOS performance of the 20 TCM-RT portfolios constructed

using combinations of 10 return forecasting methods with EFMcapm (Panel B) or

SAMcov (Panel C). Notably, compared to the CP strategies obtained using the same

inputs (Table A2), the TCM-RT portfolios deliver much lower realized risk and

turnover owing to the imposition of turnover penalization and the variance up-

per bound. No TCM-RT portfolio goes bankrupt during the OOS period. More

importantly, the VW portfolio cannot significantly outperform any TCM-RT strate-

gies, except for that estimated using SAMmean and SAMcov, in terms of before-

and after-cost Sharpe ratios. Of the 20 TCM-RT strategies, 17 can produce higher

after-cost Sharpe ratios than the VW portfolio. In particular, the 4 strategies con-

structed using combinations of SAMcov with expected return estimators based on

Fama-MacBeth regressions can achieve net-of-costs Sharpe ratios that are not only

economically meaningful (NSR = 1.16, 1.13, 1.12 and 1.06) but also significantly

different from the Sharpe ratio achieved by the VW strategy (NSR = 0.57).

It is worth mentioning that with the reduction in effective costs incurred for

large-cap stocks, turnover regularization exerts weaker effects on portfolio weights.

As a consequence, as shown in the columns labeled TOfirst and TOsecond, TCM-RT

portfolios have much higher turnover in the second half of the OOS period during

which the market is more liquid.

[Insert Table 8 near here]

Table 8 presents the OOS performance of the 20 TCM-RT strategies obtained

using combinations of 10 return forecasting methods with two improved covariance

matrix estimators: GALcov (Panel B) and DCCnl (Panel C). Of 20 portfolios, only

the hybrid of GALmean with DCCnl goes bankrupt in one month. With the excep-

tion of the two portfolios based on SAMmean, all TCM-RT portfolios can produce

impressive Sharpe ratios ranging from 0.63 to 1.77, some of which are significantly

different from the Sharpe ratio attained by the VW strategy. Moreover, the differ-

ences in Sharpe ratios between the VW strategy and the two portfolios constructed

using SAMmean are statistically insignificant. The final column shows that after ac-

counting for transaction costs, only the 4 TCM-RT strategies that combine GALcov

with Fama-MacBeth-related estimators (FMlarge, FMwls, GFMlarge and GFMwls) can

significantly outperform the VW portfolio (Net Sharpe Ratio = 1.16, 1.13, 1.12 and

1.06). Furthermore, in comparison to the best performing TCM-RT strategies in

Table 7, the four strategies do less short selling and are therefore less susceptible to

the related costs.
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5.5.5 Short-sale constraints

Most investors have small, if any, short selling positions. On top of that, the short

legs of some well-known anomalies have very high short selling costs (Drechsler

and Drechsler 2018). These costs are hard to quantify for representative historical

samples, such as ours, and therefore typically not accounted for in the portfolio

optimization literature. Due to this, we consider a conservative case in which mean-

variance investors are short-sale-constrained and ask if they can still benefit from

the TCM-RT strategy implemented with improved inputs. That is, we add the

constraint, wi,t ≥ 0, into Eq. (5.10).

[Insert Table 9 near here]

Table 9 documents the OOS performance of the TCM-RT long-only portfolios

constructed using combinations of 10 return forecasting methods with EFMcapm

(Panel B) or SAMcov (Panel C).38 Not surprisingly, prohibiting short selling leads

to substantial reduction in turnover. But it also results in reduction in profitability

for most of the combinations. That is, of the 20 TCM-RT long-only portfolios, 17

perform worse than the unconstrained counterparts in terms of Sharpe ratios; more

importantly, none can significantly outperforms the VW portfolio in terms of the

net-of-costs Sharpe ratio. It is interesting to note that the imposition of short-sale

constraints can considerably improve the performance of the unconstrained TCM-RT

strategy using sample estimates with the Sharpe ratio increasing from 0.06 to 0.54.

In addition, the short-sale-constrained TCM-RT portfolios constructed using the

hybrid of SAMmean with EFMcapm and the hybrid of GALmean with SAMcov deliver

higher Sharpe ratios than their TCM-RT counterparts. Overall, the evidence is not

supportive of the TCM-RT optimization for investors with short-sale constraints.

This does not exclude the possibility of investors gaining from portfolio optimization,

OOS and after transaction costs, as they might be able to short-sell at low costs.

But it shows that if we remove the possibility of short selling (for free) such gains

become much subdued.

5.5.6 Smaller investment universe

In Table A10 and Table A11, we use a smaller investment universe that consists

of the 50 largest common stocks by market equity. The two tables suggest that

no TCM-RT portfolio can outperform the VW portfolio in a statistically significant

way though some of them can produce net-of-costs Sharpe ratios greater than 0.7.

38Since optimized portfolios based on GALcov and DCCnl deliver similar performance to those
based on EFMcapm and SAMcov, for the sake of brevity, their results are reported in Panels B and
C of Table A8, respectively.
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Interestingly, the TCM-RT strategies obtained using the Galton covariance matrix

consistently overestimate the OOS risk, whereas the others still underestimate that.

5.5.7 Kirby and Ostdiek (2012)’s low-turnover strategy

Instead of directly managing transaction costs, Kirby and Ostdiek (2012) propose

a Reward-to-Risk Timing (RRT) strategy featuring no short sale, low turnover and

simple construction procedure. The strategy refrains from estimating covariances

and assumes investors with a strong prior belief that all stocks will earn non-negative

excess returns. The estimated optimal weight for stock i at the end of month t is

given by

ŵi,t =
(µ̂+

i,t+1|t/σ̂i,t+1|t)∑
i(µ̂

+
i,t+1|t/σ̂i,t+1|t)

, (5.12)

where µ̂+
i,t+1|t = max(µ̂i,t+1|t, 0), µ̂i,t+1|t denotes an estimate of the expected return,

σ̂i,t+1|t denotes an estimate of the variance. The RRT strategy is effectively a tan-

gency portfolio consisting of stocks with positive estimated expected returns and a

diagonal covariance matrix.

[Insert Table 10 near here]

Table 10 presents the OOS performance of the RRT portfolios constructed us-

ing combinations of 10 return forecasting methods with the estimated variances

extracted from the main diagonal of EFMcapm (Panel B) or SAMcov (Panel C). The

two estimators for variances are effectively the sample variances computed from

monthly or daily returns, respectively.39 As expected, all RRT strategies exhibit

low turnover and perform better than the value-weighted strategy in terms of the

Sharpe ratio. In particular, there are 14 strategies (out of 20) whose outperformance

over the VW strategy is statistically significant. Economically, all RRT strategies

outperform the VW strategy in terms of the net-of-costs Sharpe ratios; however,

their outperformance is statistically insignificant. Table 10 also indicates that in-

vestors cannot derive much benefit from using daily sample variances in place of

monthly counterparts to implement the RRT strategy. Moreover, monthly sample

variances tend to perform as well as their Galton and GARCH counterparts when

used to construct the RRT portfolio (see Table A9 for results about GALcov and

DCCnl).

39Note that the variance estimated by the single index model is slightly different from the sample
variance due to the minor difference in degrees of freedom.
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5.6 Parametric Portfolio Policies (PPP)

Another popular method to simultaneously exploit multiple stock characteristics in

portfolio optimization is Parametric Portfolio Policies (PPP) developed by Brandt,

Santa-Clara, and Valkanov (2009, BSV). Different from the MVE strategies which

are implemented using expected returns estimated from characteristic data as well

as an estimated covariance matrix, the PPP portfolio is constructed by directly

parameterizing portfolio weights as a function of stock characteristics, which is given

by

wi,t = w̄i,t +
1

Nt

θT ẑi,t, (5.13)

where w̄i,t is the weight of stock i in a benchmark portfolio such as the value-weighted

portfolio at the end of month t, θ denotes a vector of coefficients that needs to

be estimated, and ẑi,t denotes a vector of the latest known values of normalized

characteristics with a mean of zero for stock i at the end of month t. The investor’s

problem is to find an optimal vector of weights that can maximize the conditional

expected utility of the portfolio’s return (rp,t+1) net of trading costs, that is,

max
wt

Et

[
U(rp,t+1)

]
= Et

[
U

( Nt∑
i=1

wi,tri,t+1 − κi,t|wi,t − w̃i,t−1|
)]

. (5.14)

The coefficients (θ) are assumed to be fixed across assets and over time so that

Eq. (5.14) can be rewritten as an unconditional optimization problem whose sample

analog is given by

max
θ

1

T

T−1∑
t=0

[
U

( Nt∑
i=1

(w̄i,t +
1

Nt

θT ẑi,t)ri,t+1 − κi,t|wi,t − w̃i,t−1|
)]

. (5.15)

When effective spreads of all stocks are zeroes, it corresponds to the vanilla version

of the PPP method. Consistent with BSV, we assume an investor with a CRRA

preference and a risk aversion coefficient of 5. The estimation sample consists of

the 500 largest stocks by market equity with non-missing characteristics. We fit the

model yearly at the end of June using an expanding window. Specifically, we use the

data up to June 1986 to get the first set of the estimated coefficients which is in turn

used to construct OOS PPP portfolios over the holding period 1986:07 to 1987:06

along with monthly lagged characteristics. At the end of June in the subsequent

year, we re-estimate the coefficients using the enlarging estimation sample. The

investment universe is the same as that used in other OOS applications. To further

mitigate overfitting as a result of a large predictor set, DeMiguel et al. (2020) use a
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lasso constraint in the PPP optimization, which is given by

∥θ∥1 ≤ δ,

where δ is a hyperparameter that governs the intensity of coefficient regularization.

When δ = 0, the resulting PPP portfolio is the benchmark portfolio; when δ is large

enough, the constraint is inactive, and therefore the unconstrained PPP is recovered.

Following DeMiguel et al. (2020), we use a 5-fold cross-validation to select optimal

δ from 32 candidate values that are evenly spaced over an interval between 0 and

500 and use a rolling window of 100 months to estimate the coefficients.

The proportional transaction cost parameter used in BSV and DeMiguel et al.

(2020) is a function of time and firm size, which is given by

κ∗
i,t = ytzi,t, (5.16)

where yt is assumed to decrease linearly from a value of 5.02 in July 1964 to 1.0 in

January 2002 and remain unchanged afterwards.40 zi,t = 0.006 − 0.0025 × lmei,t,

where lmei,t is the ranked-normalized market capitalization of stock i in month

t ranging from zero to one. This function implies that the proportional trading

costs for the largest stock are approximately 156 basis points in 1987:01 and remain

constant at 35 basis points after 2002.

[Insert Figure 2 near here]

Fig. 2 depicts the dynamics of proportional transaction-cost parameters esti-

mated by BSV and those estimated by us. It shows that the BSV approach tends

to assume higher average costs than ours. This should erode more before-cost gains

and also penalize marginal turnover more heavily in the model estimation.

[Insert Table 11 near here]

Table 11 presents the OOS performance of portfolio policies. We use the VW

portfolio as the benchmark strategy for all policies. PPP3 denotes policies with

three characteristics: value, momentum and size characteristics, which are the same

as in the original study. PPP62 denotes policies exploiting the full set of 62 char-

acteristics listed in Table A1. PPP62lasso denotes policies that exploits the 62 char-

acteristics and are regularized by the lasso constraint. We consider three versions

of the PPP optimization: PPP without transaction cost management (Panel B),

40It is based on the assumption of BSV that yt in January 1974 are four times larger than in
January 2002.
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transaction-cost-managed PPP built using our effective-spread estimates (Panel C)

and transaction-cost-managed PPP built using effective-spread estimates of BSV

(Panel D).

Panel B shows that PPP3 that is not optimized with trading costs yields lower

before- and after-cost Sharpe ratios than the benchmark strategy. Transaction-cost-

unmanaged PPP62 produces a very unfavorable net-of-costs Sharpe ratio of −0.46.

Panel C suggests that performance gains as a result of transaction cost management

for PPP3 are marginal, whereas those for PPP62 are impressive. Transaction-cost-

managed PPP62 has much less turnover than its unmanaged counterpart (8120.60%

vs 703.75%) and outperforms the VW strategy in terms of before- and after-cost

Sharpe ratios though the differences are statistically insignificant. Despite further

reducing the turnover of PPP62, the lasso constraint can hurt the profitability of

transaction-cost-managed PPP62. The before- and after-cost Sharpe ratios delivered

by PPP62lasso are just 0.47 and 0.27, respectively.

Panel D reports the OOS performance of transaction-cost-managed policies esti-

mated using the trading-cost estimator of Brandt, Santa-Clara, and Valkanov (2009).

With a stronger turnover regularization, transaction-cost-managed PPP62 outper-

forms the VW portfolio in terms of both before-cost and after-cost Sharpe ratios.

The before-cost outperformance is statistically significant with a p-value of just 5%

(SR = 1.00 and p-value = 0.05). Though economically meaningful, the after-cost

Sharpe ratio of 0.84 is not significantly different from that of the VW portfolio (p-

value = 0.21). For the other two portfolio policies, PPP3 is still comparable to the

passive counterpart though the policy has short positions in stocks, while PPP62lasso

remains dismal. Overall, for the universe of large-cap stocks, no portfolio policy can

outperform the VW strategy in a statistically significant way, which is consistent

with the findings of DeMiguel et al. (2020).41

6 Conclusion

It is well-documented that the sample-based MVE portfolio delivers undesirable

OOS performance. We examine whether improvements in estimation of expected

returns and the covariance matrix can translate into outperformance of the MVE

strategies over the value-weighted portfolio, especially after accounting for transac-

tion costs. We use an OOS period from 1987:01 to 2020:12 and a relatively large

investment universe consisting of the 500 largest stocks by market capitalization.

41In table IA.30, they document that the regularized parametric portfolio policy with 51 charac-
teristics constructed using large stocks (i.e., stocks in the top size quintile) fails to outperform the
passive strategy. Also, the large-stock policy based on the size, book-to-market, and momentum
characteristics and the large-stock policy based on the size, book-to-market, asset growth, and
gross profitability characteristics yield lower net-of-costs Sharpe ratios than the passive strategy.
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Besides conventional return forecasting methods based on Fama-MacBeth regres-

sions and the recently proposed methods based on machine learning techniques, we

propose two shrinkage Fama-MacBeth estimators which apply the Galton correction

of Barroso and Saxena (2022) to ordinary Fama-MacBeth estimates. Like other al-

ternative mean estimators, they can achieve much higher OOS predictive R2 than

the sample mean. Our empirical applications focus on four covariance matrix esti-

mators, all of which can handle large dimensions. The first two are respectively the

covariance matrix implied by the single-index model and the daily sample covariance

matrix, both of which are widely used and can be easily obtained. The other two are

the best performing methods among the 8 prominent covariance matrix estimators

we examine in terms of the realized risk of the GMV portfolio.

We find that of the 80 TP strategies we examine, only 10 can deliver significantly

higher Sharpe ratios than the VW portfolio and that only 19 never go bankrupt

during the OOS period. More importantly, no tangency portfolio can outperform the

VW counterpart after accounting for trading costs. Risk targeting can substantially

reduce the possibility of bankruptcy and improve the before-cost performance of the

MVE strategy. Of the 80 RT strategies, only two have non-zero bankruptcy rate

and 30 can outperform the VW strategy by economically and statistically significant

margins. However, no RT strategy can outperform the passive counterpart in a

statistically significant way after accounting for trading costs.

The after-cost performance of the RT strategy can be substantially improved

by incorporating transaction costs into the optimization problem. The 4 TCM-

RT strategies implemented using combinations of a Fama-MacBeth-related mean

estimator with the (daily) sample or Galton covariance matrix can deliver impres-

sive after-cost Sharpe ratios, which are significantly different from the Sharpe ratio

earned by the VW portfolio. However, in the presence of short-sale constraints, the

TCM-RT strategy does not exhibit any advantages over the buy-and-hold counter-

part, at least for the set large-cap U.S. stocks.

One limitation of out study is that we do not account for model uncertainty

in portfolio selection. In our OOS exercises, we just assume that investors use op-

timization inputs obtained from the same estimators over the entire OOS period.

Additionally, we restrict our investment universe to large-cap stocks and provide

evidence unsupportive of complex methods for estimating expected returns and the

covariance matrix. We do not rule out the possibility that the mean-variance opti-

mization for small-cap stocks or in larger sets can benefit from advanced forecasting

methods. However, estimating and managing transaction costs for small-cap stocks

can be even more challenging than for large caps due to price impacts and other

frictions not accounted for in our study.
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Figure 1
Estimates of effective half-spreads for stocks used in OOS exercises – 1987:01-2020:12
The plot depicts half of effective spreads for the top-500 stocks by market capitalization over the OOS period
1987:01 to 2020:12. The purple (blue) line represents the maximum (minimum) spreads. The orange line represents
the mean spreads.
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Figure 2
Comparison of transaction cost estimators for the estimation sample of PPP
The plot depicts monthly average transaction costs of stocks included in the estimation sample of PPP (i.e. the
500 largest stocks by market equity with non-missing 62 characteristics) over the 1964:07 to 2020:12 period. The
blue line depicts dynamics of (ex ante) transaction cost estimates used in our main analysis, the purple line depicts
dynamics of transaction cost estimates used in Brandt, Santa-Clara, and Valkanov (2009).
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Table 1
OOS R2(%) of expected return estimators
The table reports out-of-sample (OOS) R2 of various expected return forecasting methods for the investment universe used in our OOS exercises over the 1987:01 to 2020:12 period. Besides
OOS R2, the table presents the corresponding paper of each method and the model type.

Paper Model Type R2
oos

Return-based Estimators
SAMmean Markowitz (1952) Sample Mean -1.75
GALmean Barroso and Saxena (2022) Sample Mean with Galton Correction 0.50

Fama-MacBeth Regressions without/with Galton Correction
FMlarge Fama and MacBeth (1973) OLS for Large Stocks 0.48
FMwls Fama and MacBeth (1973) WLS for All Stocks 0.50
GFMlarge OLS for Large Stocks with Galton Correction 0.61
GFMwls WLS for All Stocks with Galton Correction 0.64

Machine Learning
AGLASSOlarge Freyberger, Neuhierl, and Weber (2020) Additive Model for Large Stocks with Adaptive Group Lasso 0.25
IPCAK=5,large Kelly, Pruitt, and Su (2019) Linear Conditional Latent Factor Model for Large Stocks 0.58
CA2K=5 Gu, Kelly, and Xiu (2021) Conditional Autoencoder 0.61
NN3 Gu, Kelly, and Xiu (2020) Neutral Network 0.66
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Table 2
OOS performance of the GMV portfolio
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. We construct the global minimum variance (GMV) portfolio using various covariance matrix estimators:
the daily sample covariance matrix (SAM), the covariance matrix implied by the single index model of Sharpe (1963,
EFMcapm), the Galton covariance matrix of Barroso and Saxena (2022, GALcov), the covariance matrix estimated
by the Principal Orthogonal ComplEment Thresholding method of Fan, Liao, and Mincheva (2013, POET), two
linear shrinkage estimators proposed by Ledoit and Wolf (2003, 2004, LWcapm and LWcc), the nonlinear shrinkage
estimator of Ledoit and Wolf (2020, LWnl), and the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019,
DCCnl). All portfolios are rebalanced monthly. VW and EW respectively denote the value-weighted and equal-
weighted portfolios. The columns present descriptive statistics of the OOS performance of each strategy: average
realized excess return (µ̂), realized standard deviation (σ̂), ratio of realized volatility to average exepcted volatility
( σ̂
σ̄exp

), the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with

before-cost returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio
(NSR). The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the null hypothesis of equal variances,
equal Sharpe ratios, or equal net-of-costs Sharpe ratios between a GMV portfolio and the value-weighted portfolio
is reported in parentheses.

µ̂ σ̂ σ̂
σ̄exp

SNW AS BR SR TO NSR

VW 8.59 14.99 0.00 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

EFMcapm 6.84 12.27
(0.00)

5.60 -42.07 100.40 0.00 0.56
(0.94)

21.47 0.50
(0.75)

SAM 6.10 11.32
(0.00)

2.32 -280.41 334.05 0.00 0.54
(0.86)

158.20 0.24
(0.08)

GAL 6.82 10.41
(0.00)

1.38 -128.03 186.51 0.00 0.66
(0.65)

57.04 0.53
(0.81)

POET 6.61 10.53
(0.00)

2.11 -126.64 186.20 0.00 0.63
(0.76)

48.41 0.52
(0.78)

LWcapm 6.66 10.67
(0.00)

1.98 -176.88 233.82 0.00 0.62
(0.78)

84.31 0.46
(0.53)

LWcc 6.65 11.14
(0.00)

1.94 -201.50 257.64 0.00 0.60
(0.90)

98.44 0.41
(0.42)

LWnl 6.49 10.55
(0.00)

1.79 -155.71 210.97 0.00 0.61
(0.81)

74.17 0.46
(0.53)

DCCnl 8.79 10.18
(0.00)

2.46 -131.89 192.37 0.00 0.86
(0.09)

240.58 0.38
(0.25)
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Table 3
OOS performance of tangency portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following
12 months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio
(VW) and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of tangency portfolios
constructed using combinations of 10 return forecasting methods with the covariance matrix implied by the single
index model (Panel B) or the daily sample covariance matrix (Panel C). All portfolios are rebalanced monthly. The
columns present descriptive statistics of the OOS performance of each strategy: average realized excess return (µ̂),

realized standard deviation (σ̂), ratio of average realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized

volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active share (AS), bankruptcy

rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio (SR), portfolio turnover
(TO) and net-of-costs Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12. A two-sided p-value for
the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a tangency portfolio and the
value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW AS BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean -18.46 114.29 -0.20 12.41 -293.19 343.00 0.74 −0.16

(0.01)
315.18 −0.23

(0.00)

GALmean 6.80 11.87 0.56 5.34 -43.14 101.10 0.00 0.57
(1.00)

22.45 0.52
(0.79)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 10.07 182.17 0.12 17.13 -398.62 453.64 0.25 0.06

(0.35)
1071.02 −0.11

(0.05)

FMwls 57.90 253.52 0.31 9.92 -1047.49 1099.09 0.49 0.23
(0.14)

2636.41 −0.27
(0.00)

GFMlarge 14.11 13.48 0.71 4.56 -75.02 133.93 0.00 1.05
(0.03)

205.35 0.58
(0.97)

GFMwls 14.20 13.38 0.85 4.42 -77.32 135.36 0.00 1.06
(0.03)

213.57 0.60
(0.88)

Machine Learning
AGLASSOlarge 9.84 98.16 0.14 11.38 -279.81 334.32 0.49 0.10

(0.17)
616.42 −0.10

(0.01)

IPCAK=5,large 11.84 14.46 0.63 4.86 -77.96 135.13 0.00 0.82
(0.25)

131.44 0.48
(0.69)

CA2K=5 33.93 52.00 0.49 4.85 -398.69 452.61 0.00 0.65
(0.72)

2792.56 −0.20
(0.00)

NN3 10.73 40.94 0.32 8.15 -157.52 214.15 0.25 0.26
(0.46)

432.62 −0.10
(0.01)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 2.96 186.66 0.01 4.78 -2746.89 2794.16 0.74 0.02

(0.04)
11560.70 −0.36

(0.00)

GALmean 5.08 12.02 0.39 2.34 -297.02 349.82 0.00 0.42
(0.46)

176.91 0.10
(0.02)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 112.10 205.16 0.30 4.55 -3290.18 3339.12 0.98 0.55

(0.91)
9176.28 −0.26

(0.00)

FMwls 161.80 469.38 0.34 7.43 -4522.49 4569.11 1.23 0.34
(0.32)

11194.57 −0.14
(0.00)

GFMlarge 40.23 24.55 0.64 1.93 -878.91 931.94 0.00 1.64
(0.00)

2120.49 0.16
(0.04)

GFMwls -503.77 3177.84 -1.24 30.21 -7996.05 8048.30 0.25 −0.16
(0.38)

16354.89 −0.17
(0.01)

Machine Learning
AGLASSOlarge 26.78 367.76 0.04 5.80 -4388.25 4434.84 1.23 0.07

(0.12)
10849.39 −0.46

(0.00)

IPCAK=5,large 22.39 19.41 0.57 2.11 -627.25 678.56 0.00 1.15
(0.01)

929.17 0.04
(0.01)

CA2K=5 88.16 180.77 0.27 3.76 -3504.69 3554.14 0.98 0.49
(0.79)

9771.79 −0.35
(0.00)

NN3 60.59 76.01 0.28 2.44 -2410.66 2461.17 0.74 0.80
(0.40)

6267.14 −0.36
(0.00)
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Table 4
OOS performance of tangency portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past 60
months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12 months.
Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW) and the
equal-weighted portfolio (EW). Panels B and C present the OOS performance of tangency portfolios constructed
using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso and Saxena (2022)
(Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). All portfolios are rebalanced
monthly. The columns present descriptive statistics of the OOS performance of each strategy: average realized
excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to average expected returns

( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active

share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio
(SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12.
A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a
strategy and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW AS BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean -348.10 1949.24 -0.61 20.25 -2687.18 2729.63 3.19 −0.18

(0.01)
3826.52 −0.20

(0.00)

GALmean 5.86 10.95 0.45 1.37 -139.33 196.18 0.00 0.54
(0.87)

72.55 0.38
(0.37)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 136.65 192.97 0.47 3.25 -1815.76 1867.26 0.25 0.71

(0.54)
5111.25 0.36

(0.28)

FMwls 143.71 255.74 0.49 4.12 -1891.33 1940.40 0.49 0.56
(0.97)

4961.81 0.16
(0.06)

GFMlarge 38.32 23.23 0.67 1.26 -515.33 571.36 0.00 1.65
(0.00)

1325.68 0.65
(0.66)

GFMwls 38.39 30.91 0.66 1.42 -611.14 666.08 0.00 1.24
(0.01)

1598.93 0.49
(0.69)

Machine Learning
AGLASSOlarge 252.88 999.59 0.43 10.40 -2628.89 2679.28 0.49 0.25

(0.34)
6186.66 0.06

(0.14)

IPCAK=5,large 20.86 17.73 0.57 1.32 -355.65 408.70 0.00 1.18
(0.01)

585.61 0.41
(0.45)

CA2K=5 417.68 1469.25 0.60 8.92 -4685.24 4737.97 0.00 0.28
(0.28)

10723.97 0.20
(0.07)

NN3 56.50 62.78 0.38 1.72 -1097.31 1151.42 0.25 0.90
(0.24)

2777.50 0.11
(0.04)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 3.27 35.61 0.02 2.05 -718.72 767.31 0.00 0.09

(0.04)
858.12 −0.45

(0.00)

GALmean 8.39 10.05 0.66 2.35 -138.10 197.35 0.00 0.83
(0.13)

247.54 0.33
(0.16)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 78.84 160.34 0.53 7.14 -1090.74 1145.04 0.25 0.49

(0.72)
2857.79 0.24

(0.10)

FMwls 354.52 1822.47 0.66 21.92 -3686.11 3737.50 0.49 0.19
(0.23)

8094.87 0.15
(0.14)

GFMlarge 20.17 13.38 0.65 1.91 -280.56 339.59 0.00 1.51
(0.00)

685.26 0.46
(0.52)

GFMwls 19.25 14.26 0.69 1.93 -301.41 359.56 0.00 1.35
(0.00)

747.40 0.38
(0.29)

Machine Learning
AGLASSOlarge 293.14 1076.32 0.67 22.96 -2292.71 2346.84 0.00 0.27

(0.19)
5141.74 0.22

(0.16)

IPCAK=5,large 16.21 14.22 0.58 2.16 -251.63 308.58 0.00 1.14
(0.01)

441.79 0.33
(0.18)

CA2K=5 81.50 104.78 0.47 3.26 -1495.14 1548.02 0.25 0.78
(0.34)

5581.28 −0.45
(0.00)

NN3 141.09 653.06 0.75 18.61 -1585.69 1640.39 0.25 0.22
(0.20)

3597.65 0.09
(0.10)
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Table 5
OOS performance of RT portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW)
and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of RT portfolios constructed
using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso and Saxena
(2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). All portfolios are
rebalanced monthly. The columns present descriptive statistics of the OOS performance of each strategy: average
realized excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to average expected

returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW),

active share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe
ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1 (TO2) denotes average portfolio
turnover over the 1st (2nd) half of the OOS period. The OOS period is from 1987:01 to 2020:12. A two-sided
p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between an optimized
portfolio and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 24.47 61.38 0.16 4.21 -433.37 0.00 0.40

(0.46)
318.82 0.24

(0.16)

GALmean 50.01 76.76 0.62 5.26 -278.03 0.00 0.65
(0.71)

279.85 0.55
(0.91)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 65.56 54.62 0.51 3.74 -441.75 0.00 1.20

(0.01)
1300.62 0.56

(0.98)

FMwls 62.88 52.68 0.53 3.61 -454.99 0.00 1.19
(0.01)

1320.37 0.53
(0.84)

GFMlarge 70.81 67.24 0.72 4.61 -350.84 0.00 1.05
(0.03)

972.09 0.65
(0.73)

GFMwls 69.37 66.16 0.84 4.53 -355.84 0.00 1.05
(0.03)

987.96 0.64
(0.74)

Machine Learning
AGLASSOlarge 61.91 55.36 0.56 3.79 -415.92 0.00 1.12

(0.01)
798.47 0.68

(0.63)

IPCAK=5,large 59.50 74.06 0.67 5.08 -345.51 0.25 0.80
(0.31)

584.65 0.55
(0.93)

CA2K=5 62.70 49.46 0.62 3.39 -436.18 0.00 1.27
(0.00)

1322.45 0.52
(0.81)

NN3 58.00 54.84 0.57 3.76 -394.44 0.00 1.06
(0.02)

1070.85 0.51
(0.78)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean -2.42 46.76 -0.02 2.69 -1173.18 0.00 −0.05

(0.02)
982.39 −0.46

(0.00)

GALmean 18.14 40.32 0.41 2.32 -1000.69 0.00 0.45
(0.56)

647.63 0.11
(0.03)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 66.05 31.62 0.46 1.82 -1259.88 0.00 2.09

(0.00)
3045.99 0.19

(0.07)

FMwls 63.11 31.99 0.46 1.84 -1257.57 0.00 1.97
(0.00)

3043.73 0.10
(0.03)

GFMlarge 64.58 32.62 0.73 1.87 -1198.18 0.00 1.98
(0.00)

2772.50 0.32
(0.21)

GFMwls 61.31 33.07 0.80 1.90 -1198.37 0.00 1.85
(0.00)

2774.68 0.25
(0.11)

Machine Learning
AGLASSOlarge 49.01 33.18 0.39 1.91 -1260.29 0.00 1.48

(0.00)
2114.99 −0.04

(0.01)

IPCAK=5,large 36.59 35.06 0.52 2.01 -1165.97 0.00 1.04
(0.04)

1664.49 0.05
(0.02)

CA2K=5 52.52 30.27 0.43 1.74 -1264.54 0.00 1.74
(0.00)

3213.74 −0.39
(0.00)

NN3 50.48 30.89 0.43 1.77 -1293.82 0.00 1.63
(0.00)

3080.28 −0.28
(0.00)
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Table 6
OOS performance of RT portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW)
and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of RT portfolios constructed
using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso and Saxena
(2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). All portfolios are
rebalanced monthly. The columns present descriptive statistics of the OOS performance of each strategy: average
realized excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to average expected

returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW),

active share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe
ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1 (TO2) denotes average portfolio
turnover over the 1st (2nd) half of the OOS period. The OOS period is from 1987:01 to 2020:12. A two-sided
p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between an optimized
portfolio and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean -0.58 30.44 -0.01 1.82 -456.90 0.00 −0.02

(0.03)
301.31 −0.25

(0.00)

GALmean 12.38 23.12 0.44 1.39 -289.60 0.00 0.54
(0.87)

154.22 0.37
(0.34)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 40.48 19.84 0.46 1.18 -513.92 0.00 2.04

(0.00)
1315.97 0.56

(0.95)

FMwls 39.09 19.59 0.46 1.17 -515.66 0.00 1.99
(0.00)

1312.77 0.50
(0.72)

GFMlarge 39.64 20.93 0.72 1.25 -465.56 0.00 1.89
(0.00)

1185.26 0.65
(0.66)

GFMwls 38.00 20.85 0.80 1.24 -467.45 0.00 1.82
(0.00)

1183.03 0.60
(0.87)

Machine Learning
AGLASSOlarge 29.05 18.83 0.39 1.13 -479.94 0.00 1.54

(0.00)
872.38 0.33

(0.30)

IPCAK=5,large 23.50 21.45 0.54 1.28 -424.84 0.00 1.10
(0.03)

682.46 0.35
(0.32)

CA2K=5 33.72 18.55 0.46 1.11 -505.96 0.00 1.82
(0.00)

1343.93 0.14
(0.04)

NN3 30.40 18.07 0.43 1.08 -497.61 0.00 1.68
(0.00)

1222.79 0.17
(0.06)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 2.48 33.66 0.02 2.10 -650.69 0.00 0.07

(0.04)
733.53 −0.36

(0.00)

GALmean 29.56 43.03 0.60 2.68 -511.10 0.25 0.69
(0.54)

938.60 0.26
(0.07)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 42.20 30.41 0.40 1.89 -691.46 0.00 1.39

(0.00)
1678.90 0.25

(0.10)

FMwls 40.64 29.83 0.40 1.86 -693.46 0.00 1.36
(0.00)

1680.70 0.20
(0.06)

GFMlarge 45.08 37.23 0.63 2.32 -621.39 0.00 1.21
(0.01)

1533.13 0.36
(0.27)

GFMwls 43.42 36.39 0.70 2.27 -623.58 0.00 1.19
(0.01)

1524.30 0.35
(0.23)

Machine Learning
AGLASSOlarge 38.63 27.01 0.38 1.68 -689.29 0.00 1.43

(0.00)
1289.31 0.31

(0.20)

IPCAK=5,large 33.84 37.68 0.53 2.35 -603.52 0.00 0.90
(0.12)

1079.73 0.28
(0.12)

CA2K=5 35.55 28.89 0.41 1.80 -707.16 0.00 1.23
(0.01)

1803.81 −0.08
(0.00)

NN3 35.29 29.49 0.39 1.84 -700.84 0.00 1.20
(0.01)

1694.66 0.04
(0.01)
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Table 7
OOS performance of TCM-RT portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past 60
months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12 months.
Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW) and the
equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-RT portfolios constructed
using combinations of 10 return forecasting methods with the covariance matrix implied by the single index model
(Panel B) or the daily sample covariance matrix (Panel C). TCM-RT portfolios refer to portfolios constructed using
mean-variance optimization with transaction cost management and risk targeting. All portfolios are rebalanced
monthly. The columns present descriptive statistics of the OOS performance of each strategy: average realized
excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to average expected returns

( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active

share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio
(SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1 (TO2) denotes average portfolio turnover
over the 1st (2nd) half of the OOS period. The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the
null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a strategy and the value-weighted
portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 26.53 59.38 0.18 4.07 -427.96 0.00 0.45

(0.59)
225.65 179.62 271.69 0.37

(0.40)

GALmean 48.06 73.22 0.62 5.02 -250.28 0.00 0.66
(0.69)

191.21 148.43 234.00 0.62
(0.81)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 61.14 57.04 0.51 3.91 -420.24 0.00 1.07

(0.03)
994.55 791.77 1197.33 0.79

(0.31)

FMwls 58.70 54.33 0.52 3.72 -432.83 0.00 1.08
(0.02)

995.69 776.22 1215.17 0.79
(0.30)

GFMlarge 62.07 69.42 0.67 4.76 -327.26 0.00 0.89
(0.13)

658.51 522.03 794.98 0.72
(0.50)

GFMwls 59.41 68.17 0.78 4.67 -329.09 0.00 0.87
(0.16)

619.43 402.02 836.83 0.75
(0.39)

Machine Learning
AGLASSOlarge 53.50 55.41 0.52 3.80 -401.81 0.00 0.97

(0.07)
502.86 449.99 555.74 0.81

(0.26)

IPCAK=5,large 54.53 69.45 0.65 4.76 -333.47 0.00 0.79
(0.33)

321.38 280.45 362.30 0.71
(0.53)

CA2K=5 57.54 51.27 0.62 3.51 -407.62 0.00 1.12
(0.01)

938.77 722.28 1155.25 0.84
(0.21)

NN3 52.42 56.83 0.56 3.89 -372.22 0.00 0.92
(0.10)

706.81 468.27 945.36 0.75
(0.39)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 2.42 42.51 0.02 2.44 -1087.55 0.00 0.06

(0.05)
577.18 199.64 954.72 −0.06

(0.02)

GALmean 18.88 33.35 0.50 1.92 -722.35 0.00 0.57
(0.98)

210.17 39.32 381.02 0.54
(0.88)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 56.18 30.53 0.43 1.75 -1149.48 0.00 1.84

(0.00)
2168.11 972.17 3364.04 1.17

(0.00)

FMwls 53.30 30.77 0.43 1.77 -1142.28 0.00 1.73
(0.00)

2141.32 936.51 3346.13 1.10
(0.01)

GFMlarge 49.03 31.46 0.64 1.81 -1044.25 0.00 1.56
(0.00)

1680.29 546.22 2814.37 1.20
(0.00)

GFMwls 44.52 31.10 0.69 1.79 -1022.23 0.00 1.43
(0.00)

1618.38 431.63 2805.13 1.14
(0.01)

Machine Learning
AGLASSOlarge 37.23 30.32 0.33 1.74 -1140.23 0.00 1.23

(0.01)
1167.74 618.46 1717.03 0.83

(0.25)

IPCAK=5,large 28.51 31.96 0.47 1.84 -1013.37 0.00 0.89
(0.13)

738.25 233.89 1242.61 0.74
(0.42)

CA2K=5 42.83 29.10 0.40 1.67 -1121.50 0.00 1.47
(0.00)

2176.12 874.43 3477.80 0.83
(0.22)

NN3 36.56 29.11 0.35 1.67 -1155.32 0.00 1.26
(0.00)

2020.86 616.60 3425.12 0.76
(0.37)
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Table 8
OOS performance of TCM-RT portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following
12 months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio
(VW) and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-RT portfolios
constructed using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso
and Saxena (2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). TCM-
RT portfolios refer to portfolios constructed using mean-variance optimization with transaction cost management
and risk targeting. All portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS
performance of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average

realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

),

the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost
returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1
(TO2) denotes average portfolio turnover over the 1st (2nd) half of the OOS period. The OOS period is from
1987:01 to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe
ratios between an optimized portfolio and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 2.53 28.17 0.03 1.68 -442.56 0.00 0.09

(0.07)
187.47 85.73 289.21 0.02

(0.03)

GALmean 13.48 21.28 0.53 1.28 -229.60 0.00 0.63
(0.76)

50.04 19.94 80.15 0.62
(0.82)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 35.71 20.22 0.44 1.21 -493.21 0.00 1.77

(0.00)
1005.83 607.61 1404.04 1.16

(0.01)

FMwls 34.36 20.06 0.44 1.20 -494.32 0.00 1.71
(0.00)

991.67 588.11 1395.22 1.13
(0.01)

GFMlarge 30.33 21.33 0.62 1.27 -429.22 0.00 1.42
(0.00)

780.89 341.81 1219.97 1.12
(0.01)

GFMwls 27.54 21.08 0.67 1.26 -425.22 0.00 1.31
(0.00)

746.63 270.84 1222.43 1.06
(0.01)

Machine Learning
AGLASSOlarge 23.47 18.64 0.34 1.12 -454.99 0.00 1.26

(0.00)
534.25 356.67 711.83 0.91

(0.14)

IPCAK=5,large 18.94 20.21 0.49 1.21 -401.36 0.00 0.94
(0.09)

337.88 141.41 534.34 0.81
(0.28)

CA2K=5 28.68 19.36 0.43 1.16 -476.95 0.00 1.48
(0.00)

974.46 552.17 1396.75 0.90
(0.11)

NN3 23.35 18.32 0.37 1.09 -469.49 0.00 1.27
(0.00)

840.29 375.19 1305.38 0.83
(0.20)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 5.86 31.57 0.04 1.97 -632.64 0.00 0.19

(0.11)
526.42 255.18 797.67 0.01

(0.02)

GALmean 26.01 38.31 0.59 2.40 -452.62 0.25 0.68
(0.60)

533.87 133.69 934.05 0.61
(0.86)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 38.24 30.84 0.39 1.92 -663.77 0.00 1.24

(0.01)
1247.29 654.28 1840.30 0.81

(0.27)

FMwls 36.79 30.26 0.40 1.88 -663.96 0.00 1.22
(0.01)

1235.23 638.72 1831.74 0.80
(0.30)

GFMlarge 38.25 36.28 0.59 2.26 -582.05 0.00 1.05
(0.04)

1056.69 414.84 1698.53 0.76
(0.39)

GFMwls 35.66 35.23 0.66 2.20 -575.95 0.00 1.01
(0.05)

989.00 350.23 1627.77 0.79
(0.31)

Machine Learning
AGLASSOlarge 33.66 27.12 0.35 1.69 -656.50 0.00 1.24

(0.00)
844.24 511.59 1176.90 0.88

(0.14)

IPCAK=5,large 28.92 35.65 0.50 2.23 -570.90 0.00 0.81
(0.25)

638.18 247.36 1029.00 0.66
(0.68)

CA2K=5 31.96 29.44 0.41 1.84 -663.13 0.00 1.09
(0.04)

1273.56 610.79 1936.34 0.67
(0.66)

NN3 30.23 28.82 0.37 1.80 -662.01 0.00 1.05
(0.05)

1184.67 483.64 1885.70 0.69
(0.58)
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Table 9
OOS performance of TCM-RT long-only portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW) and
the equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-RT long-only Markowitz
portfolios constructed using combinations of 10 return forecasting methods with the covariance matrix implied by
the single index model (Panel B) or the daily sample covariance matrix (Panel C). TCM-RT portfolios refer to
portfolios constructed using mean-variance optimization with transaction cost management and risk targeting. All
portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS performance of each
strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to

average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), active share (AS),

bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio (SR), portfolio
turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1 (TO2) denotes average portfolio turnover over the 1st
(2nd) half of the OOS period. The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the null
hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a strategy and the value-weighted
portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 17.65 29.77 0.30 2.04 0.00 0.59

(0.91)
41.63 26.50 56.77 0.58

(0.98)

GALmean 23.36 42.47 0.55 2.91 0.00 0.55
(0.91)

46.64 36.42 56.86 0.53
(0.85)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 27.76 37.50 0.62 2.57 0.00 0.74

(0.33)
245.33 191.10 299.55 0.64

(0.67)

FMwls 27.06 35.24 0.67 2.42 0.00 0.77
(0.24)

245.77 192.53 299.00 0.67
(0.57)

GFMlarge 28.03 41.89 0.66 2.87 0.00 0.67
(0.60)

157.65 100.38 214.92 0.63
(0.76)

GFMwls 26.64 40.94 0.76 2.81 0.00 0.65
(0.67)

153.45 85.50 221.41 0.61
(0.81)

Machine Learning
AGLASSOlarge 25.19 33.72 0.63 2.31 0.00 0.75

(0.29)
134.17 122.05 146.29 0.68

(0.47)

IPCAK=5,large 25.45 40.57 0.72 2.78 0.00 0.63
(0.77)

76.34 59.32 93.37 0.60
(0.87)

CA2K=5 25.75 34.99 0.73 2.40 0.00 0.74
(0.31)

248.41 193.31 303.51 0.62
(0.72)

NN3 26.23 37.64 0.65 2.58 0.00 0.70
(0.48)

191.15 130.16 252.14 0.63
(0.74)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 10.46 19.37 0.24 1.11 0.00 0.54

(0.78)
23.85 15.46 32.24 0.52

(0.69)

GALmean 11.90 19.66 0.57 1.20 0.00 0.61
(0.80)

12.22 9.72 14.72 0.60
(0.83)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 15.89 20.69 0.53 1.22 0.00 0.77

(0.13)
191.02 164.65 217.39 0.61

(0.74)

FMwls 14.97 20.51 0.55 1.23 0.00 0.73
(0.20)

184.42 160.80 208.03 0.58
(0.93)

GFMlarge 14.23 21.11 0.58 1.29 0.00 0.67
(0.42)

148.24 99.30 197.19 0.59
(0.86)

GFMwls 13.39 20.55 0.67 1.30 0.00 0.65
(0.53)

131.61 78.89 184.34 0.59
(0.89)

Machine Learning
AGLASSOlarge 13.42 19.01 0.53 1.20 0.00 0.71

(0.26)
104.75 99.31 110.19 0.61

(0.72)

IPCAK=5,large 12.37 19.30 0.61 1.22 0.00 0.64
(0.60)

59.84 38.44 81.23 0.61
(0.78)

CA2K=5 14.35 21.80 0.59 1.31 0.00 0.66
(0.50)

192.29 168.63 215.96 0.50
(0.56)

NN3 15.59 20.79 0.61 1.24 0.00 0.75
(0.14)

166.63 125.14 208.12 0.62
(0.66)
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Table 10
OOS performance of reward-to-risk timing strategies
The table presents the OOS performance of the reward-to-risk timing strategy of Kirby and Ostdiek (2012). The
portfolios are constructed using the same investment universe and optimization inputs as the Markowitz portfolios.
The expected returns are estimated by 10 different methods. The variances of stocks are estimated by two methods.
In Panel B, we use the variance implied by the single index model. In Panel C, we use the sample variance
based on daily returns. All portfolios are rebalanced monthly. The columns present descriptive statistics of the
OOS performance of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of

average realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility

( σ̂
σ̄exp

), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR),

Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). The OOS period is from 1987:01
to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios
between a strategy and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

AS BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 8.79 14.24 0.43 1.09 48.95 0.00 0.62

(0.35)
10.47 0.60

(0.57)

GALmean 8.86 13.76 0.72 1.15 45.76 0.00 0.64
(0.26)

6.57 0.63
(0.34)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 11.13 14.28 0.81 1.22 57.19 0.00 0.78

(0.01)
78.76 0.62

(0.49)

FMwls 11.13 14.39 0.86 1.21 56.83 0.00 0.77
(0.01)

80.42 0.62
(0.51)

GFMlarge 9.98 13.91 0.80 1.20 49.82 0.00 0.72
(0.05)

41.89 0.63
(0.39)

GFMwls 9.94 13.97 0.94 1.19 49.38 0.00 0.71
(0.05)

42.19 0.63
(0.38)

Machine Learning
AGLASSOlarge 9.92 13.65 0.75 1.13 53.72 0.00 0.73

(0.01)
42.97 0.63

(0.28)

IPCAK=5,large 9.19 13.54 0.87 1.19 50.06 0.00 0.68
(0.15)

23.99 0.62
(0.50)

CA2K=5 11.19 14.41 0.97 1.19 55.55 0.00 0.78
(0.01)

80.15 0.60
(0.67)

NN3 10.30 14.07 0.85 1.18 51.52 0.00 0.73
(0.03)

52.95 0.62
(0.49)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 8.88 14.47 0.43 0.91 49.85 0.00 0.61

(0.40)
10.47 0.59

(0.62)

GALmean 8.98 13.94 0.73 0.94 46.58 0.00 0.64
(0.26)

6.22 0.63
(0.34)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 11.23 14.48 0.81 0.99 58.01 0.00 0.78

(0.01)
79.19 0.62

(0.52)

FMwls 11.25 14.58 0.86 0.99 57.68 0.00 0.77
(0.01)

80.92 0.61
(0.53)

GFMlarge 10.12 14.10 0.81 0.97 50.70 0.00 0.72
(0.05)

42.42 0.63
(0.40)

GFMwls 10.10 14.16 0.95 0.97 50.30 0.00 0.71
(0.05)

42.76 0.63
(0.39)

Machine Learning
AGLASSOlarge 10.01 13.82 0.76 0.93 54.33 0.00 0.72

(0.02)
43.37 0.63

(0.31)

IPCAK=5,large 9.34 13.69 0.89 0.96 50.78 0.00 0.68
(0.14)

24.20 0.62
(0.47)

CA2K=5 11.30 14.63 0.97 0.98 56.35 0.00 0.77
(0.01)

80.69 0.59
(0.72)

NN3 10.43 14.26 0.85 0.96 52.44 0.00 0.73
(0.03)

53.42 0.62
(0.51)
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Table 11
OOS performance of parametric portfolio policies
The table presents the OOS performance of parametric portfolio policies (PPP) proposed by Brandt, Santa-Clara,
and Valkanov (2009). The portfolios are constructed using the same investment universe as the Markowitz portfolios.
We use estimated coefficients along with monthly lagged characteristics to form OOS PPP. The coefficients are
updated at the end of June. The benchmark portfolio is the value-weighted portfolio (VW) whose OOS performance
is reported in Panel A. PPP3 denotes the portfolio policy based on the three characteristics used in Brandt, Santa-
Clara, and Valkanov (2009) (i.e. value, momentum and size); PPP62 denotes the portfolio policy based on the 62
characteristics used in our study. PPP62lasso denotes the portfolio policy that incorporates a lasso penalty into
PPP62. Panel B reports the results for portfolio policies without transaction cost management. Panels C and D
report results for transaction-cost-managed portfolio policies. In Panel C, our ex ante effective spread estimator is
used , while in Panel D, the ex ante effective spread estimator of Brandt, Santa-Clara, and Valkanov (2009) is used
(κ∗). The columns show descriptive statistics of the OOS performance for each strategy: average realized excess
return (µ̂), realized standard deviation (σ̂), active share (AS), the sum of negative weights (SNW), bankruptcy rate
(percentage of months with before-cost returns below −100%)), Sharpe ratio (SR), turnover (TO) and net-of-costs
Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the null hypothesis of
equal Sharpe ratios or equal net-of-costs Sharpe ratios between a portfolio policy and the benchmark portfolio is
reported in parentheses.

µ̂ σ̂ AS SNW BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.00 0.57 1.47 0.57

Panel B: No Trading Cost Management

PPP3 10.00 19.99 146.27 -89.23 0.00 0.50
(0.69)

81.32 0.37
(0.26)

PPP62 149.01 261.47 3098.47 -3033.51 3.43 0.57
(0.99)

8120.60 −0.46
(0.00)

Panel C: Trading Cost Management (κ)

PPP3 8.63 16.45 109.02 -59.57 0.00 0.52
(0.74)

52.81 0.43
(0.30)

PPP62 58.77 58.89 972.47 -906.68 0.00 1.00
(0.08)

703.75 0.59
(0.92)

PPP62lasso 17.59 37.59 273.13 -246.55 0.00 0.47
(0.59)

216.41 0.27
(0.12)

Panel D: Trading Cost Management (κ∗)

PPP3 7.78 14.62 52.26 -19.25 0.00 0.53
(0.51)

16.32 0.50
(0.29)

PPP62 24.19 24.17 415.14 -349.30 0.00 1.00
(0.05)

137.25 0.84
(0.21)

PPP62lasso 10.89 33.46 241.43 -216.26 0.00 0.33
(0.17)

157.36 0.20
(0.04)
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Appendices

A Data transformation and missing Data han-

dling

Following Freyberger, Neuhierl, and Weber (2020), Kelly, Pruitt, and Su (2019),

Gu, Kelly, and Xiu (2020), Gu, Kelly, and Xiu (2021), and Chen, Pelger, and Zhu

(2020), we use ranked-normalized characteristics. Specifically, we cross-sectionally

rank all stocks by characteristic j in month t. Then, we normalized rank-transformed

characteristic j to be within [-1, 1], that is,42

c̃i,j,t = (
CSrank(ci,j,t)

Nj,t + 1
− 0.5)× 2,

where CSrank(ci,j,t) denotes cross-sectional rank of stock i by characteristic j in

month t and Nj,t denotes the number of stocks with non-missing characteristic j in

month t. Rank transformation makes estimation insensitive to outliers and it is in

line with the conventional portfolio sort approach.

When estimating parameters for methods based on large stocks, we drop small-

and micro-cap stocks after data transformation. The exception is AGLASSOlarge

since we need to use OLS estimates to compute BIC of a model; if we perform

data transformation first and then keep large stocks, the design matrix of quadratic

spline terms would be rank deficient in the sense that some columns associated with

size-related characteristics such as firm size or bid-ask spread are vectors of zeroes.

Hence, for AGLASSOlarge, we first drop non-large stocks and then perform data

transformation.

Our method for handling missing values is standard in the literature. When

estimating parameters of NN3, CA2K=5, and models based on Fama-MacBeth re-

gressions, we follow Gu, Kelly, and Xiu (2020) and Gu, Kelly, and Xiu (2021) to fill

in missing values with zeroes which are also the cross-sectional means and medians of

ranked-normalized characteristics. When estimating parameters of AGLASSOlarge

and IPCAK=5,large, we follow respective studies to use stocks with non-missing 62

characteristics.

When forming return forecasts, we use the latest known ranked-normalized char-

acteristics calculated from all stocks for all methods except AGLASSOlarge. As what

we do in parameter estimation, we fill in missing values with zeros. Given that in-

42The formula can be found in Equation A.1 of Gu, Kelly, and Xiu (2020) as well. Kelly, Pruitt,
and Su (2019) do not multiply demeaned ranks by two so that their ranked-normalized character-

istics are within [-0.5, 0.5]. Freyberger, Neuhierl, and Weber (2020) use c̃i,j,t = (
CSrank(ci,j,t)

Nj,t+1 ) so

that their characteristics are within [0, 1].

54



vestment universe of interest consists of mega stocks with full return history over the

past 60 months, there are few missing characteristics. Overall, for methods other

than the adaptive group lasso, there are only 940 (0.46%) missing return forecasts,

while there are 1263 (0.62%) missing return forecasts for the adaptive lasso. Ex-

tra 323 missing observations belong to stocks that are ranked in the top 500 by

market equity at the beginning of a year but below NYSE median during the year.

The 940 missing observations can be owing to changes in CRSP share code and/or

CRSP exchange code during a holding period. We determine investment universe

in December, we only consider U.S. common stocks listed on one of the three major

exchanges; however, we apply the sample filters to the characteristic data monthly.

A typical example is that few top-500 stocks that are defined as U.S. common stocks

with a CRSP share code of 10 or 11 at the end of year t− 1 become common stocks

incorporated outside U.S (CRSP share code of 12) during year t and thus do no

have valid stock characteristics after the change.

B Standard errors for hypothesis testing with Vari-

ance or Sharpe ratio

We follow Ledoit and Wolf (2008) and Ledoit and Wolf (2011) to compute standard

errors used in our studentized i.i.d. bootstrap. Suppose there are two portfolios i

and j whose excess returns in month t are rit and rjt, respectively. The returns can

be either original returns or bootstrap returns. There are T return pairs. The two

series are assumed to be strictly stationary and follow a bivariate return distribution

with a mean vector

[
µi

µj

]
and a covariance matrix

[
σ2
i σij

σji σ2
j

]
. Their sample estimates

are denoted by

[
µ̂i

µ̂j

]
and

[
σ̂2
i σ̂ij

σ̂ji σ̂2
j

]
. Also, the uncentered second moments of the

two series are denoted by γi and γj, respectively. Let ν = (µi, µj, γi, γj) and ν̂ =

(µ̂i, µ̂j, γ̂i, γ̂j). The difference of Sharpe ratios can be written as ∆sr = fsr(ν) where

fsr(a, b, c, d) = a√
c−a2

− b√
d−b2

; the difference of (log) variance can be denoted by

∆var = fvar(ν) where fvar(a, b, c, d) = log(c − a2) − log(d − b2). Ledoit and Wolf

(2008) assume that √
T (ν̂ − ν) → N(0;Ψ) (B.1)

so that the distribution of the difference of Sharpe ratios or variances can be ex-

presses as √
T (∆̂−∆) → N

(
0;▽′f(ν)Ψ▽f(ν)

)
(B.2)
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using the delta method where ▽′fsr(ν) is given by( c

(c− a2)1.5
,

−d

(d− b2)1.5
,

−0.5a

(c− a2)1.5
,

−0.5d

(d− a2)1.5

)
and ▽′fvar(ν) is given by( 2a

c− a2
,

2b

d− b2
,

1

c− a2
,

−1

(d− a2)1.5

)
.

The standard error used in our i.i.d bootstrap43 is calculated as

s(∆̂) = ▽′f(ν̂)Ψ̂▽f(ν̂) (B.3)

where Ψ̂ for i.i.d data is the sample covariance matrix of (rit, rj,t, r
2
i,t, r

2
j,t) (see Section

3.2.1 and Footnote 9 of Ledoit and Wolf (2008) for more details about the calculation

of Ψ̂).

C Estimation of effective spreads

We primarily use one-half of CRSP closing quoted spread (QS) to estimate effective

one-way spreads (κi,t). QS at the end of month t for stock i is calculated as

QSi,t =
1

Dt

Dt∑
d=1

Aski,d −Bidi,d

(
Aski,d+Bidi,d

2
)
,

where Aski,d and Bidi,d denote daily closing bid and ask quotes, respectively. Daily

price data are obtained from CRSP. Dt denotes the number of valid daily obser-

vations in month t. Zero daily bid-ask spreads or daily spreads higher than 50%

are excluded from the calculation. Comparing several low-frequency effective spread

estimators, Abdi and Ranaldo (2017) document that QS is generally the most accu-

rate proxy from 1993 onwards in terms of cross-sectional and time-series correlations

with effective spreads estimated from the Trade and Quote (TAQ) data as well as

prediction errors for the TAQ spreads. A continuous series of daily quote data for

NYSE and AMEX stocks becomes available on CRSP from December 28, 1992.44

As for stocks listed on NASDAQ, daily quote data for National Market (NM) secu-

43Of course, one can conduct an inference based on asymptotic normality using Eq. (B.2). How-
ever, as Ledoit and Wolf (2008) argue, it is inferior to the studentized bootstrap method. In
addition, the bootstrap method is used in the recent paper by DeMiguel et al. (2020).

44CRSP also provides daily quote data over the period December 31, 1925 to February 23 1942.
For the period February 1942 to December 27, 1992, daily quote data are only available for stocks
without closing prices. Bid and ask prices of NYSE and AMEX stocks are based on the last
representative quote before market close of each trading day, while those of NASDAQ stocks are
based on closing inside quotation.
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rities begin on November 1, 1982 and become available for all securities from June

15, 1992. Since our OOS period begins in January 1987 and investment universe

consists of the top-500 largest common stocks traded on NYSE, AMEX or NAS-

DAQ by market equity, most of stocks in our investment universe have valid values

of QSi,t. Specifically, over the period 1993-2020 (1987-1992), 98% (9.6%) of obser-

vations have non-missing QSi,t. We fill in missing values especially those over the

1977-1992 period with one half of Abdi and Ranaldo (2017)’s estimates for bid-ask

spreads, which are computed using daily Close, High and Low (CHL) prices, all of

which are available over the entire CRSP sample period. The two-day corrected

version of CHL for stock i at the end of month t is given by

CHLi,t =
1

Dt

Dt∑
d=1

ŝi,t, ŝi,d =
√
max{4(ci,d − ηi,d)(ci,d − ηi,d+1), 0},

where Dt is the number of trading days in month t, ŝi,t is a two-day estimate of the

bid-ask spread, ci,d is the daily close log-price, and ηi,d is the average of daily low

and high log-prices.45.

Abdi and Ranaldo (2017) show that in the absence of QS, CHL is the best per-

forming estimator in terms of the evaluation criteria mentioned above. Notably, it

even outperforms QS in terms of cross-sectional correlation and prediction errors

during the 1993-2000 period, but the latter still has the highest time-series correla-

tion coefficient with the TAQ effective spreads. Furthermore, DeMiguel et al. (2020)

use CHL to check the robustness of their results regarding trading diversification

benefits, that is, combining multiple characteristics can help reduce trading costs,

We fill in the remaining missing values with annual effective costs of Hasbrouck

(2009, Gibbs) first. He estimates the Roll (1984) model by the Gibbs sampler using

daily close prices only.46 We then follow Novy-Marx and Velikov (2016) to fill in the

rest of missing values with their closest peers in terms of the rank of market value

and idiosyncratic volatility and their closest matches in terms of market value only.

D Additional tables

45We are grateful to the authors for making their code online. Note that we slightly modify their
code by excluding the last daily observation (ŝi,d) from monthly average as it is computed with
price information on the first trading day of next month (ηi,d+1), which is after portfolio formation.
Again, we divide the measure by 2 as our proportional transaction cost. The adjusted measure is
very close to the original one with a correlation of 99.8% for all stocks.

46Note that when implementing transaction-cost-managed strategies, we use previous year’s
Gibbs estimates as inputs to avoid look-ahead bias.
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Table A1
62 firm-specific characteristics by category
The table lists the firm characteristics used in our empirical analysis by category.

Past Returns Value
(1) ret1,2 Short-term reversal (33) A2ME Assets to market value of equity
(2) ret2,6 Recent momentum (34) BEME Log book value minus log market value of equity in prior fiscal year
(3) ret2,12 Momentum (35) BEMEadj Fama-French 48 industry adjusted book to market ratio
(4) ret7,12 Intermediate momentum (36) C Ratio of cash and short-term investments to total assets
(5) ret12,36 Long-term reversal (37) C2D Cash flow to total debt

(38) ∆SO Log change in split-adjusted shares outstanding in prior fiscal year
Investment (39) Debt2P Total debt to market value of equity

(6) Investment Log growth in total assets (40) E2P Earnings to market value of equity
(7) ∆CEQ percentage change in book equity (41) Free CF Free cash flow to Book Equity
(8) ∆PI2A Change in PPE and Inventory scaled by lagged total assets (42) LDP Dividend yield over past 12 months
(9) ∆Shrout Log growth in split-adjusted shares outstanding from t-36 to t-1 (43) NOP Net payouts to market value of equity
(10) IVC Change in inventory scaled by average total assets (44) O2P Operating payouts to market value of equity
(11) NOA Net operating assets over lagged total assets (45) Q Tobin’s Q

(46) S2P Sales to market value of equity
Profitability (47) ∆Sales Sales Growth

(12) ATO Sales to lagged net operating assets
(13) CTO Capital turnover Trading Frictions

(14) ∆(∆GM − ∆Sales) ∆(% change in gross margin and % change in sales) (48) AT Log Total assets
(15) EPS Earnings per share (49) Beta Frazzini-Pederson beta
(16) IPM Before-tax profit margin (pretax income over sales) (50) Beta daily Dimson beta using daily returns
(17) IPMadj Fama-French 48 industry adjusted IPM (51) DTO De-trended turnover - market turnover
(18) PCM Price-to-cost margin (sales minus COGS to sales) (52) Idio vol Idio vol of Fama-French 3-factor model
(19) PM Profit margin (OI after depreciation over sales) (53) LME Log market value of equity
(20) Profitability Gross profitability scaled by book value of equity (54) LMEadj Fama-French 48 industry adjusted market value of equity
(21) RNA Return on net operating assets (55) LTO Monthly turnover in month t-1
(22) ROA Return on assets (56) PTH Price in month t-2 to 52-week high
(23) ROC Productivity of cash (57) Retmax Maximum daily return in month t-1
(24) ROE Return on equity (58) Spread Average daily bid-ask spread in month t-1
(25) ROIC Return on invested capital (59) σto Standard deviation of daily turnover
(26) S2C Sales to cash (60) σvol Standard deviation of daily volume
(27) SAT Sales to total assets (61) SUV Standard unexplained volume
(28) SATadj Fama-French 48 industry adjusted SAT (62) σret Standard deviation of daily returns

Intangibles

(29) AOA Absolute value of operating accruals
(30) OL Operating leverage
(31) Tan Tangibility
(32) OA Operating accruals
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Table A2
OOS performance of complete portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW)
and the equal-weighted portfolio (EW). complete portfolios constructed using combinations of 10 return forecasting
methods with the covariance matrix implied by the single index model (Panel B) or the daily sample covariance
matrix (Panel C). All portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS
performance of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average

realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

),

the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost
returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). The
OOS period is from 1987:01 to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal
net-of-costs Sharpe ratios between a complete portfolio and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW AS BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 448.40 1027.50 0.19 4.81 -6485.28 8708.69 25.49 0.44

(0.56)
19137.93 −0.05

(0.01)

GALmean 399.44 621.83 0.58 5.46 -2191.06 4882.47 19.85 0.64
(0.73)

32395.00 −0.03
(0.01)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 763.60 740.95 0.47 4.20 -5442.00 7594.55 14.71 1.03

(0.04)
21017.11 0.12

(0.07)

FMwls 697.51 681.58 0.49 4.12 -5257.17 7138.40 13.73 1.02
(0.05)

19717.29 0.10
(0.04)

GFMlarge 608.83 663.10 0.63 4.87 -3338.42 5852.47 15.69 0.92
(0.11)

11943.09 0.40
(0.42)

GFMwls 501.74 560.62 0.73 4.90 -2827.18 4920.68 14.46 0.89
(0.14)

12525.90 0.34
(0.30)

Machine Learning
AGLASSOlarge 580.53 559.01 0.47 3.69 -4432.18 6349.22 15.93 1.04

(0.03)
21463.59 0.29

(0.21)

IPCAK=5,large 469.15 593.02 0.60 4.84 -3071.12 5370.19 16.42 0.79
(0.30)

11596.44 0.20
(0.08)

CA2K=5 593.65 559.10 0.57 3.96 -4321.25 5921.99 11.52 1.06
(0.02)

16283.60 0.26
(0.19)

NN3 517.98 590.79 0.50 4.19 -3779.22 5819.76 13.73 0.88
(0.16)

14819.03 0.16
(0.07)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 19.24 459.43 0.01 2.69 -11700.72 11979.28 15.93 0.04

(0.04)
41224.45 −1.02

(0.00)

GALmean 59.66 124.42 0.44 2.41 -2977.50 3503.62 1.23 0.48
(0.62)

3524.28 −0.23
(0.00)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 679.23 309.44 0.47 1.84 -12422.33 12837.88 3.92 2.20

(0.00)
47556.50 −0.13

(0.00)

FMwls 628.81 295.88 0.48 1.84 -11837.13 12212.75 3.92 2.13
(0.00)

36904.86 0.00
(0.01)

GFMlarge 421.82 206.50 0.75 1.98 -7113.44 7633.25 0.98 2.04
(0.00)

22817.47 0.07
(0.01)

GFMwls 340.40 175.43 0.84 1.97 -6154.16 6590.37 0.98 1.94
(0.00)

14980.61 0.20
(0.06)

Machine Learning
AGLASSOlarge 458.46 294.84 0.36 2.04 -10249.33 10668.91 4.17 1.55

(0.00)
21448.96 −0.26

(0.00)

IPCAK=5,large 248.27 191.05 0.62 2.27 -5661.37 6134.49 1.47 1.30
(0.00)

10766.41 −0.18
(0.00)

CA2K=5 439.42 245.08 0.43 1.74 -10652.95 10920.84 2.45 1.79
(0.00)

40374.68 −0.36
(0.00)

NN3 411.41 258.77 0.43 1.90 -10253.71 10624.02 2.45 1.59
(0.00)

30414.36 −0.45
(0.00)
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Table A3
OOS performance of complete portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past 60
months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12 months.
Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW) and the
equal-weighted portfolio (EW). Panels B and C present the OOS performance of complete portfolios constructed
using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso and Saxena (2022)
(Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). All portfolios are rebalanced
monthly. The columns present descriptive statistics of the OOS performance of each strategy: average realized
excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to average expected returns

( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active

share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio
(SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12.
A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a
complete portfolio and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW AS BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 0.00 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 5.06 227.54 0.01 1.92 -3342.99 3483.87 5.15 0.02

(0.03)
6037.53 −0.48

(0.00)

GALmean 29.23 59.23 0.45 1.68 -618.23 874.19 0.00 0.49
(0.69)

509.57 0.09
(0.02)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 316.65 148.15 0.51 1.35 -3471.09 3688.51 0.25 2.14

(0.00)
9576.36 0.38

(0.35)

FMwls 297.34 139.51 0.52 1.33 -3323.83 3518.21 0.00 2.13
(0.00)

9025.69 0.07
(0.09)

GFMlarge 200.19 108.81 0.76 1.57 -1962.98 2235.99 0.49 1.84
(0.00)

5032.31 0.44
(0.49)

GFMwls 161.90 90.00 0.88 1.52 -1666.43 1893.47 0.25 1.80
(0.00)

4414.12 0.22
(0.18)

Machine Learning
AGLASSOlarge 213.08 138.07 0.40 1.48 -2846.22 3059.31 0.25 1.54

(0.00)
8056.87 0.04

(0.03)

IPCAK=5,large 127.70 98.72 0.64 1.74 -1559.84 1796.75 0.25 1.29
(0.00)

2754.52 0.32
(0.22)

CA2K=5 217.65 109.82 0.52 1.21 -2852.66 2991.63 0.00 1.98
(0.00)

7531.97 0.07
(0.01)

NN3 182.23 105.50 0.48 1.24 -2587.80 2781.81 0.00 1.73
(0.00)

7055.96 −0.16
(0.00)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 94.24 329.47 0.06 1.89 -7549.94 8323.61 12.50 0.29

(0.21)
28014.78 −0.58

(0.00)

GALmean 133.38 141.77 0.57 2.22 -2178.16 3070.09 1.47 0.94
(0.04)

5349.67 0.35
(0.21)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 399.36 211.24 0.41 1.54 -6270.98 7013.88 2.94 1.89

(0.00)
181139.51 −0.10

(0.14)

FMwls 369.74 198.62 0.42 1.53 -5988.61 6650.79 2.45 1.86
(0.00)

16035.07 0.41
(0.45)

GFMlarge 292.17 170.76 0.62 1.82 -3767.32 4618.96 1.72 1.71
(0.00)

11147.19 0.53
(0.81)

GFMwls 239.81 144.78 0.71 1.81 -3258.70 3970.61 0.98 1.66
(0.00)

9288.15 0.53
(0.82)

Machine Learning
AGLASSOlarge 304.62 212.70 0.28 1.62 -6074.38 6700.47 2.70 1.43

(0.00)
17325.47 −0.05

(0.01)

IPCAK=5,large 219.21 160.13 0.57 1.92 -3308.20 4081.82 0.98 1.37
(0.00)

8206.46 0.24
(0.14)

CA2K=5 269.16 158.38 0.40 1.41 -5377.29 5854.51 1.47 1.70
(0.00)

14559.44 0.16
(0.06)

NN3 271.16 171.84 0.38 1.49 -5438.21 6034.90 1.72 1.58
(0.00)

14540.97 0.11
(0.04)
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Table A4
OOS performance of TCM portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW)
and the equal-weighted portfolio (EW). transaction-costs-managed (TCM) portfolios constructed using combinations
of 10 return forecasting methods with the covariance matrix implied by the single index model (Panel B) or the
daily sample covariance matrix (Panel C). All portfolios are rebalanced monthly. The columns present descriptive
statistics of the OOS performance of each strategy: average realized excess return (µ̂), realized standard deviation

(σ̂), ratio of average realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average

exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage

of months with before-cost returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs
Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the null hypothesis of
equal Sharpe ratios or equal net-of-costs Sharpe ratios between a complete portfolio and the value-weighted portfolio
is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 446.46 943.90 0.21 4.79 -5398.64 21.32 0.47

(0.68)
35706.85 51811.01 19602.70 −0.16

(0.01)

GALmean 339.75 540.78 0.59 5.62 -1575.28 13.97 0.63
(0.78)

8094.87 5124.46 11065.28 0.38
(0.36)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 599.38 667.31 0.45 4.43 -4257.80 13.97 0.90

(0.15)
13256.00 9994.09 16517.92 0.55

(0.92)

FMwls 542.99 616.46 0.47 4.35 -4126.43 12.50 0.88
(0.17)

14802.26 9213.12 20391.41 0.50
(0.75)

GFMlarge 458.56 576.72 0.60 5.05 -2438.85 14.46 0.80
(0.28)

7788.91 5741.93 9835.88 0.56
(0.98)

GFMwls 356.88 489.48 0.68 5.23 -1993.72 12.25 0.73
(0.47)

9638.36 5341.53 13935.18 0.42
(0.45)

Machine Learning
AGLASSOlarge 441.40 505.35 0.43 3.87 -3476.71 13.48 0.87

(0.17)
11872.95 9399.96 14345.93 0.30

(0.36)

IPCAK=5,large 375.41 520.18 0.60 5.03 -2294.75 13.24 0.72
(0.48)

8788.66 8974.05 8603.26 0.14
(0.13)

CA2K=5 469.06 518.73 0.56 4.31 -3340.02 9.56 0.90
(0.13)

11044.45 6440.02 15648.88 0.62
(0.83)

NN3 409.60 534.67 0.49 4.46 -2870.98 12.25 0.77
(0.37)

19943.61 4008.97 35878.24 0.55
(0.93)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 75.04 368.06 0.06 2.47 -8770.41 12.50 0.20

(0.15)
42806.70 10133.29 75480.10 −0.29

(0.00)

GALmean 49.27 92.37 0.50 2.06 -1983.83 0.49 0.53
(0.84)

989.23 443.57 1534.89 0.42
(0.45)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 431.96 247.12 0.40 1.82 -9263.71 3.68 1.75

(0.00)
36275.58 7148.42 65402.75 0.88

(0.18)

FMwls 392.41 236.34 0.41 1.84 -8733.38 3.92 1.66
(0.00)

201596.13 6076.66 397115.60 −0.02
(0.35)

GFMlarge 211.36 159.07 0.56 1.91 -5059.88 1.47 1.33
(0.00)

11719.34 6634.84 16803.85 0.03
(0.18)

GFMwls 176.33 130.21 0.65 1.84 -4329.30 0.74 1.35
(0.00)

8771.73 1726.76 15816.71 0.74
(0.53)

Machine Learning
AGLASSOlarge 245.25 212.65 0.26 1.83 -7337.09 3.43 1.15

(0.01)
11830.79 5873.24 17788.34 0.36

(0.50)

IPCAK=5,large 139.90 141.70 0.54 2.10 -3912.16 0.74 0.99
(0.04)

4181.65 1921.15 6442.16 0.66
(0.68)

CA2K=5 251.05 197.19 0.33 1.75 -7946.57 2.45 1.27
(0.00)

19844.33 4652.39 35036.27 0.61
(0.84)

NN3 225.92 208.89 0.32 1.91 -7559.10 2.21 1.08
(0.02)

18468.71 3435.92 33501.50 0.58
(0.95)
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Table A5
OOS performance of TCM portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW)
and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of transaction-cost-managed
(TCM) portfolios constructed using combinations of 10 return forecasting methods with the Galton covariance
matrix of Barroso and Saxena (2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019)
(Panel C). All portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS performance
of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns

to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of

negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns
below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1 (TO2)
denotes average portfolio turnover over the 1st (2nd) half of the OOS period. The OOS period is from 1987:01
to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios
between a strategy and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 18.51 191.77 0.03 1.72 -2756.75 4.17 0.10

(0.06)
3728.10 3356.76 4099.44 −0.28

(0.00)

GALmean 23.65 49.25 0.46 1.53 -424.38 0.00 0.48
(0.63)

111.19 90.92 131.45 0.44
(0.52)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 211.26 119.63 0.45 1.29 -2734.55 0.25 1.77

(0.00)
8588.80 5266.40 11911.19 0.27

(0.46)

FMwls 195.20 113.32 0.46 1.29 -2593.57 0.25 1.72
(0.00)

5438.04 3672.33 7203.74 1.01
(0.03)

GFMlarge 108.59 85.01 0.59 1.48 -1423.39 0.49 1.28
(0.00)

2520.61 1609.48 3431.74 0.93
(0.06)

GFMwls 81.79 68.94 0.65 1.40 -1221.38 0.25 1.19
(0.00)

2049.09 992.24 3105.94 0.91
(0.07)

Machine Learning
AGLASSOlarge 134.61 115.03 0.31 1.41 -2293.52 0.00 1.17

(0.01)
5462.52 3220.77 7704.28 0.28

(0.30)

IPCAK=5,large 68.71 82.72 0.49 1.63 -1246.48 0.25 0.83
(0.22)

1171.46 1273.96 1068.95 0.36
(0.39)

CA2K=5 132.79 88.05 0.43 1.18 -2145.75 0.00 1.51
(0.00)

4535.05 2530.17 6539.92 0.90
(0.10)

NN3 110.13 87.97 0.39 1.23 -1987.51 0.25 1.25
(0.00)

3608.32 1806.57 5410.07 0.80
(0.24)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 101.82 295.33 0.07 1.83 -6579.21 9.80 0.34

(0.33)
32010.15 33654.84 30365.46 −0.20

(0.00)

GALmean 110.56 118.56 0.57 2.15 -1727.95 0.74 0.93
(0.05)

4645.39 386.08 8904.69 0.76
(0.32)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 302.28 189.88 0.37 1.61 -5255.46 2.70 1.59

(0.00)
15992.22 4255.88 27728.57 1.07

(0.01)

FMwls 277.00 177.77 0.38 1.58 -5038.79 1.72 1.56
(0.00)

13024.33 7694.69 18353.98 0.26
(0.39)

GFMlarge 206.65 148.16 0.56 1.85 -3068.72 0.98 1.39
(0.00)

21751.56 9198.77 34304.34 −0.05
(0.13)

GFMwls 162.47 123.15 0.62 1.83 -2607.24 0.74 1.32
(0.00)

5744.65 1332.34 10156.96 1.06
(0.01)

Machine Learning
AGLASSOlarge 224.57 188.60 0.24 1.64 -5144.98 2.45 1.19

(0.01)
9842.37 5469.91 14214.84 0.53

(0.87)

IPCAK=5,large 154.73 139.51 0.51 1.89 -2744.68 0.49 1.11
(0.00)

5926.77 2547.70 9305.85 0.62
(0.83)

CA2K=5 198.00 142.70 0.37 1.52 -4402.07 1.23 1.39
(0.00)

10245.18 2913.33 17577.03 0.85
(0.18)

NN3 206.04 154.26 0.36 1.57 -4481.86 1.47 1.34
(0.00)

9779.93 2475.35 17084.51 0.95
(0.05)
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Table A6
OOS performance of TCM-BC portfolios
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following
12 months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio
(VW) and the equal-weighted portfolio (EW). TCM-BC portfolios constructed using combinations of 10 return
forecasting methods with the covariance matrix implied by the single index model (Panel B) or the daily sample
covariance matrix (Panel C). TCM-BC portfolios refer to portfolios constructed using mean-variance optimization
with transaction cost management and a budget constraint. All portfolios are rebalanced monthly. The columns
present descriptive statistics of the OOS performance of each strategy: average realized excess return (µ̂), realized

standard deviation (σ̂), ratio of average realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility

to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e.,

percentage of months with before-cost returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO)
and net-of-costs Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the
null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a complete portfolio and the
value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 144.07 719.23 0.09 4.20 -6077.02 21.57 0.20

(0.14)
29634.96 17451.05 41818.86 −0.22

(0.00)

GALmean 16.77 54.37 0.80 4.14 -367.60 0.00 0.31
(0.29)

201.23 15.27 387.19 0.28
(0.24)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 359.72 307.78 0.43 2.56 -4910.27 5.15 1.17

(0.01)
16180.44 10492.74 21868.13 0.30

(0.31)

FMwls 336.38 289.24 0.44 2.53 -4646.80 5.88 1.16
(0.01)

11865.43 5845.57 17885.30 0.69
(0.59)

GFMlarge 161.36 155.87 0.69 2.49 -2463.68 1.47 1.04
(0.05)

9600.98 2381.81 16820.15 0.68
(0.63)

GFMwls 124.22 132.68 0.74 2.51 -2065.57 0.98 0.94
(0.12)

4492.03 1348.60 7635.46 0.70
(0.56)

Machine Learning
AGLASSOlarge 190.34 263.57 0.28 2.63 -3741.63 4.41 0.72

(0.54)
27404.04 33936.50 20871.59 −0.18

(0.01)

IPCAK=5,large 97.31 157.92 0.46 2.73 -2240.95 1.23 0.62
(0.87)

3078.63 2397.93 3759.33 0.27
(0.24)

CA2K=5 240.10 230.24 0.43 2.36 -3837.14 3.19 1.04
(0.05)

9768.34 4164.34 15372.33 0.62
(0.84)

NN3 200.61 205.64 0.44 2.29 -3434.12 2.70 0.98
(0.09)

7377.55 4455.00 10300.10 0.39
(0.51)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 54.19 364.66 0.04 2.40 -9341.19 12.25 0.15

(0.11)
29695.60 13406.49 45984.71 −0.38

(0.00)

GALmean 8.71 22.69 0.50 1.83 -485.58 0.00 0.38
(0.45)

105.77 13.65 197.89 0.37
(0.42)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 393.82 228.50 0.39 1.75 -9357.20 2.94 1.72

(0.00)
27242.17 7269.98 47214.36 0.86

(0.22)

FMwls 366.09 220.00 0.40 1.77 -8815.38 2.45 1.66
(0.00)

24423.83 5979.51 42868.15 0.93
(0.11)

GFMlarge 176.33 112.52 0.64 1.67 -4581.01 0.00 1.57
(0.00)

8990.40 2340.72 15640.08 1.09
(0.02)

GFMwls 136.40 98.85 0.67 1.73 -3925.70 0.00 1.38
(0.00)

7378.02 1384.48 13371.57 1.03
(0.04)

Machine Learning
AGLASSOlarge 211.03 196.73 0.23 1.79 -7276.83 2.70 1.07

(0.04)
2924932.95 5499.41 5844366.48 −0.17

(0.13)

IPCAK=5,large 85.49 105.10 0.47 1.94 -3480.29 0.49 0.81
(0.30)

3147.88 1248.02 5047.74 0.56
(0.98)

CA2K=5 223.22 185.67 0.31 1.71 -7948.68 1.72 1.20
(0.01)

30738.41 4334.82 57142.01 0.41
(0.55)

NN3 199.59 191.60 0.31 1.84 -7635.23 1.72 1.04
(0.05)

21720.87 3287.43 40154.31 0.21
(0.20)
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Table A7
OOS performance of TCM-BC portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following
12 months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio
(VW) and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-BC portfolios
constructed using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso and
Saxena (2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). TCM-BC
portfolios refer to portfolios constructed using mean-variance optimization with transaction cost management and
a budget constraint. All portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS
performance of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average

realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

),

the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost
returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1
(TO2) denotes average portfolio turnover over the 1st (2nd) half of the OOS period. The OOS period is from
1987:01 to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe
ratios between a strategy and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 20.43 197.51 0.03 1.75 -2978.56 3.43 0.10

(0.07)
4837.90 5527.44 4148.36 −0.33

(0.00)

GALmean 8.06 14.44 0.54 1.22 -166.36 0.00 0.56
(0.95)

35.39 9.05 61.72 0.55
(0.91)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 194.11 103.93 0.45 1.19 -2764.59 0.00 1.87

(0.00)
9897.60 12458.20 7336.99 −0.05

(0.37)

FMwls 180.83 98.35 0.46 1.19 -2612.91 0.25 1.84
(0.00)

5149.21 3376.00 6922.43 1.17
(0.01)

GFMlarge 87.95 54.41 0.68 1.18 -1397.10 0.00 1.62
(0.00)

2398.01 1420.00 3376.02 1.16
(0.01)

GFMwls 66.27 44.85 0.73 1.15 -1157.13 0.00 1.48
(0.00)

1955.69 845.57 3065.81 1.14
(0.01)

Machine Learning
AGLASSOlarge 114.74 98.07 0.29 1.32 -2270.24 0.00 1.17

(0.01)
3938.64 2497.39 5379.89 0.57

(1.00)

IPCAK=5,large 51.13 59.02 0.50 1.43 -1208.92 0.25 0.87
(0.20)

897.36 763.10 1031.63 0.65
(0.73)

CA2K=5 123.41 79.39 0.42 1.11 -2178.66 0.00 1.55
(0.00)

4481.57 2479.92 6483.22 0.90
(0.12)

NN3 94.81 73.24 0.38 1.10 -2017.30 0.00 1.29
(0.00)

3525.59 1694.52 5356.65 0.79
(0.32)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 18.80 282.02 0.01 1.82 -6857.05 10.29 0.07

(0.05)
18410.24 11314.40 25506.07 −0.42

(0.00)

GALmean 8.99 21.13 0.46 1.61 -434.19 0.00 0.43
(0.53)

228.03 34.05 422.01 0.39
(0.44)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 210.74 143.32 0.32 1.35 -5319.30 0.74 1.47

(0.00)
11188.03 4040.75 18335.31 0.85

(0.22)

FMwls 194.33 137.15 0.33 1.35 -5056.59 0.25 1.42
(0.00)

11458.13 3770.96 19145.29 0.81
(0.30)

GFMlarge 102.72 76.81 0.53 1.36 -2718.63 0.00 1.34
(0.00)

4634.57 1504.75 7764.40 0.94
(0.10)

GFMwls 79.95 66.77 0.56 1.39 -2329.56 0.00 1.20
(0.01)

3920.59 965.16 6876.02 0.90
(0.14)

Machine Learning
AGLASSOlarge 148.21 167.17 0.18 1.64 -4963.54 2.45 0.89

(0.22)
8045.55 4159.00 11932.10 0.39

(0.47)

IPCAK=5,large 58.31 81.88 0.37 1.57 -2331.82 0.25 0.71
(0.54)

1942.60 1071.18 2814.02 0.46
(0.63)

CA2K=5 136.66 118.44 0.29 1.35 -4492.41 0.74 1.15
(0.02)

9672.37 2672.27 16672.46 0.64
(0.78)

NN3 131.16 119.47 0.27 1.34 -4589.39 0.49 1.10
(0.03)

10279.48 2300.27 18258.68 0.55
(0.95)
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Table A8
OOS performance of TCM-RT long-only portfolios (Galton and GARCH covariances)
At the end of each calendar year, we select the 500 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12
months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW) and
the equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-RT long-only portfolios
constructed using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso
and Saxena (2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). TCM-
RT portfolios refer to portfolios constructed using mean-variance optimization with transaction cost management
and risk targeting. All portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS
performance of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average

realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

),

the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost
returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1
(TO2) denotes average portfolio turnover over the 1st (2nd) half of the OOS period. The OOS period is from
1987:01 to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe
ratios between a strategy and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.57 1.47 1.77 1.16 0.57
EW 9.44 16.41 0.00 0.58

(0.96)
7.58 8.31 6.84 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 9.94 18.02 0.24 1.08 0.00 0.55

(0.84)
19.40 13.09 25.71 0.54

(0.75)

GALmean 10.32 17.28 0.56 1.13 0.00 0.60
(0.84)

9.62 7.98 11.26 0.59
(0.87)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 14.08 18.62 0.53 1.15 0.00 0.76

(0.13)
167.98 150.70 185.26 0.60

(0.82)

FMwls 13.41 18.40 0.54 1.16 0.00 0.73
(0.17)

162.70 147.58 177.81 0.58
(0.95)

GFMlarge 12.45 18.77 0.56 1.22 0.00 0.66
(0.45)

127.55 89.52 165.58 0.58
(0.94)

GFMwls 11.51 18.32 0.64 1.23 0.00 0.63
(0.64)

113.00 71.53 154.47 0.56
(0.96)

Machine Learning
AGLASSOlarge 12.09 16.93 0.53 1.14 0.00 0.71

(0.21)
91.60 89.77 93.43 0.62

(0.65)

IPCAK=5,large 10.64 17.23 0.59 1.15 0.00 0.62
(0.73)

52.59 35.83 69.35 0.58
(0.92)

CA2K=5 12.51 19.55 0.57 1.24 0.00 0.64
(0.57)

169.35 154.24 184.45 0.48
(0.43)

NN3 13.10 18.61 0.57 1.17 0.00 0.70
(0.25)

144.74 112.89 176.60 0.58
(0.95)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 8.77 18.52 0.19 1.16 0.00 0.47

(0.41)
77.39 52.64 102.15 0.42

(0.20)

GALmean 12.58 18.82 0.51 1.23 0.00 0.67
(0.51)

104.01 47.35 160.67 0.63
(0.69)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 14.91 20.17 0.48 1.30 0.00 0.74

(0.22)
202.93 172.00 233.85 0.58

(0.92)

FMwls 14.80 19.89 0.52 1.30 0.00 0.74
(0.18)

199.48 168.31 230.66 0.60
(0.84)

GFMlarge 14.45 20.38 0.53 1.34 0.00 0.71
(0.32)

173.16 121.18 225.13 0.61
(0.77)

GFMwls 14.22 19.73 0.63 1.32 0.00 0.72
(0.27)

161.73 102.96 220.50 0.64
(0.61)

Machine Learning
AGLASSOlarge 14.37 19.30 0.53 1.26 0.00 0.74

(0.22)
147.55 123.70 171.40 0.64

(0.62)

IPCAK=5,large 13.52 18.80 0.59 1.26 0.00 0.72
(0.31)

115.31 70.29 160.34 0.66
(0.55)

CA2K=5 14.02 19.29 0.59 1.28 0.00 0.73
(0.22)

198.70 166.11 231.29 0.57
(0.97)

NN3 15.12 18.89 0.58 1.22 0.00 0.80
(0.10)

176.85 129.70 224.01 0.67
(0.44)
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Table A9
OOS performance of reward-to-risk timing strategies with Galton or GARCH variances
The table presents the OOS performance of the reward-to-risk timing strategy of Kirby and Ostdiek (2012). The
portfolios are constructed using the same investment universe and optimization inputs as the Markowitz portfolios.
The expected returns are estimated by 10 different methods. The variances of stocks are estimated by two methods.
In Panel B, we use the Galton variance. In Panel C, we use the conditional variance implied by the GARCH model.
All portfolios are rebalanced monthly. The columns present descriptive statistics of the OOS performance of each
strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to

average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), active share (AS),

bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio (SR), portfolio
turnover (TO) and net-of-costs Sharpe ratio (NSR). The OOS period is from 1987:01 to 2020:12. TOfirst (TOsecond)
denotes average portfolio turnover over the first (second) half of the OOS period. A two-sided p-value for the null
hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between a strategy and the value-weighted
portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

AS BR SR TO NSR

Panel A: Benchmark Portfolios

VW 8.59 14.99 0.00 0.00 0.57 1.47 0.57
EW 9.44 16.41 45.74 0.00 0.58

(0.96)
7.58 0.56

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 8.90 14.75 0.42 0.94 49.93 0.00 0.60

(0.54)
10.51 0.58

(0.79)

GALmean 8.96 14.24 0.73 0.97 46.44 0.00 0.63
(0.37)

6.26 0.62
(0.46)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 11.18 14.76 0.81 1.01 58.00 0.00 0.76

(0.02)
79.63 0.60

(0.66)

FMwls 11.20 14.86 0.86 1.01 57.68 0.00 0.75
(0.02)

81.27 0.60
(0.68)

GFMlarge 10.10 14.40 0.81 0.99 50.57 0.00 0.70
(0.08)

42.82 0.62
(0.53)

GFMwls 10.08 14.46 0.95 0.99 50.19 0.00 0.70
(0.08)

43.14 0.62
(0.52)

Machine Learning
AGLASSOlarge 9.98 14.07 0.75 0.95 54.28 0.00 0.71

(0.03)
43.54 0.62

(0.43)

IPCAK=5,large 9.33 13.95 0.89 0.97 50.53 0.00 0.67
(0.18)

24.47 0.61
(0.59)

CA2K=5 11.27 14.91 0.96 1.00 56.36 0.00 0.76
(0.01)

80.99 0.58
(0.86)

NN3 10.40 14.53 0.85 0.99 52.39 0.00 0.72
(0.05)

53.65 0.60
(0.63)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 9.04 14.18 0.43 0.98 50.35 0.00 0.64

(0.20)
23.34 0.60

(0.61)

GALmean 9.05 13.58 0.73 1.01 46.92 0.00 0.67
(0.15)

21.07 0.63
(0.38)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 11.03 14.13 0.80 1.06 58.10 0.00 0.78

(0.01)
80.88 0.62

(0.51)

FMwls 11.06 14.25 0.86 1.06 57.79 0.00 0.78
(0.01)

82.56 0.62
(0.52)

GFMlarge 10.05 13.76 0.81 1.04 50.96 0.00 0.73
(0.04)

46.99 0.64
(0.37)

GFMwls 10.03 13.83 0.95 1.04 50.58 0.00 0.73
(0.04)

47.26 0.63
(0.36)

Machine Learning
AGLASSOlarge 10.11 13.56 0.77 1.00 54.51 0.00 0.75

(0.01)
48.84 0.64

(0.23)

IPCAK=5,large 9.33 13.41 0.88 1.03 51.15 0.00 0.70
(0.10)

33.93 0.62
(0.50)

CA2K=5 11.24 14.26 0.99 1.04 56.21 0.00 0.79
(0.01)

81.09 0.61
(0.57)

NN3 10.40 13.93 0.86 1.03 52.48 0.00 0.75
(0.02)

55.50 0.63
(0.40)
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Table A10
OOS performance of TCM-RT portfolios (N = 50)
At the end of each calendar year, we select the 50 largest common stocks with a full return history over the past 60
months and a full return history over the subsequent 12 months. The sample is kept fixed for the following 12 months.
Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio (VW) and the
equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-RT portfolios constructed
using combinations of 10 return forecasting methods with the covariance matrix implied by the single index model
(Panel B) or the daily sample covariance matrix (Panel C). TCM-RT portfolios refer to portfolios constructed using
mean-variance optimization with transaction cost management and risk targeting. All portfolios are rebalanced
monthly. The columns present descriptive statistics of the OOS performance of each strategy: average realized
excess return (µ̂), realized standard deviation (σ̂), ratio of average realized returns to average expected returns

( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

), the sum of negative weights (SNW), active

share (AS), bankruptcy rate (i.e., percentage of months with before-cost returns below −100%, BR), Sharpe ratio
(SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1 (TO2) denotes average portfolio turnover
over the 1st (2nd) half of the OOS period. The OOS period is from 1987:01 to 2020:12. A two-sided p-value for the
null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe ratios between an optimized portfolio and the
value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.42 14.79 0.00 0.00 0.57 1.86 2.21 1.51 0.57
EW 8.72 14.79 0.00 0.00 0.59

(0.66)
6.55 7.33 5.77 0.58

(0.84)

Panel B: Covariance Matrix implied by the Single Index Model

Return-based Estimators
SAMmean 11.85 24.00 0.26 1.70 -138.68 0.00 0.49

(0.72)
56.09 39.16 73.01 0.46

(0.62)

GALmean 16.87 26.65 0.64 1.91 -76.10 0.00 0.63
(0.74)

27.81 16.57 39.05 0.62
(0.77)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 17.09 22.48 0.45 1.60 -156.50 0.00 0.76

(0.38)
366.62 302.45 430.78 0.53

(0.84)

FMwls 16.37 21.61 0.46 1.53 -157.80 0.00 0.76
(0.37)

366.70 296.03 437.37 0.53
(0.82)

GFMlarge 19.92 25.60 0.68 1.82 -110.72 0.00 0.78
(0.28)

206.90 145.37 268.43 0.69
(0.53)

GFMwls 19.75 25.42 0.81 1.81 -109.30 0.00 0.78
(0.29)

198.60 111.69 285.51 0.71
(0.46)

Machine Learning
AGLASSOlarge 18.49 24.04 0.53 1.73 -142.07 0.00 0.77

(0.37)
167.14 157.15 177.12 0.66

(0.68)

IPCAK=5,large 17.93 25.52 0.67 1.82 -113.44 0.00 0.70
(0.50)

84.04 74.28 93.80 0.66
(0.66)

CA2K=5 18.64 21.94 0.63 1.56 -148.10 0.00 0.85
(0.18)

339.66 267.03 412.29 0.65
(0.70)

NN3 19.48 22.89 0.65 1.62 -130.78 0.00 0.85
(0.14)

239.70 154.32 325.09 0.74
(0.38)

Panel C: Sample Covariance Matrix

Return-based Estimators
SAMmean 6.57 20.05 0.14 1.12 -214.73 0.00 0.33

(0.30)
79.86 37.40 122.31 0.29

(0.23)

GALmean 10.90 16.39 0.67 1.06 -84.97 0.00 0.67
(0.54)

17.02 6.57 27.47 0.66
(0.56)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 15.96 18.91 0.40 1.06 -268.82 0.00 0.84

(0.21)
563.26 348.32 778.19 0.53

(0.85)

FMwls 15.50 18.79 0.42 1.05 -263.84 0.00 0.82
(0.24)

562.02 337.86 786.18 0.52
(0.81)

GFMlarge 16.34 18.31 0.66 1.05 -200.38 0.00 0.89
(0.09)

390.72 188.67 592.76 0.73
(0.41)

GFMwls 15.38 17.53 0.76 1.04 -192.16 0.00 0.88
(0.10)

361.85 138.12 585.58 0.75
(0.34)

Machine Learning
AGLASSOlarge 12.35 18.42 0.36 1.10 -220.68 0.00 0.67

(0.67)
249.51 194.43 304.59 0.50

(0.77)

IPCAK=5,large 13.96 17.20 0.68 1.05 -185.10 0.00 0.81
(0.24)

133.81 77.24 190.38 0.74
(0.40)

CA2K=5 15.28 18.91 0.48 1.07 -272.61 0.00 0.81
(0.29)

536.28 307.70 764.86 0.54
(0.86)

NN3 15.91 19.36 0.54 1.09 -248.75 0.00 0.82
(0.21)

448.04 197.19 698.90 0.64
(0.72)
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Table A11
OOS performance of TCM-RT portfolios (Galton and GARCH covariances, N = 50)
At the end of each calendar year, we select the 50 largest common stocks with a full return history over the past
60 months and a full return history over the subsequent 12 months. The sample is kept fixed for the following
12 months. Panel A presents the OOS performance of two benchmark portfolios: the value-weighted portfolio
(VW) and the equal-weighted portfolio (EW). Panels B and C present the OOS performance of TCM-RT portfolios
constructed using combinations of 10 return forecasting methods with the Galton covariance matrix of Barroso
and Saxena (2022) (Panel B) or the DCC-GARCH estimator of Engle, Ledoit, and Wolf (2019) (Panel C). TCM-
RT portfolios refer to portfolios constructed using mean-variance optimization with transaction cost management
and risk targeting. All portfolios are rebalanced monthly.The columns present descriptive statistics of the OOS
performance of each strategy: average realized excess return (µ̂), realized standard deviation (σ̂), ratio of average

realized returns to average expected returns ( µ̂
µ̄exp

), ratio of realized volatility to average exepcted volatility ( σ̂
σ̄exp

),

the sum of negative weights (SNW), active share (AS), bankruptcy rate (i.e., percentage of months with before-cost
returns below −100%, BR), Sharpe ratio (SR), portfolio turnover (TO) and net-of-costs Sharpe ratio (NSR). TO1
(TO2) denotes average portfolio turnover over the 1st (2nd) half of the OOS period. The OOS period is from
1987:01 to 2020:12. A two-sided p-value for the null hypothesis of equal Sharpe ratios or equal net-of-costs Sharpe
ratios between an optimized portfolio and the value-weighted portfolio is reported in parentheses.

µ̂ σ̂ µ̂
µ̄exp

σ̂
σ̄exp

SNW BR SR TO TO1 TO2 NSR

Panel A: Benchmark Portfolios

VW 8.42 14.79 0.00 0.00 0.57 1.86 2.21 1.51 0.57
EW 8.72 14.79 0.00 0.00 0.59

(0.66)
6.55 7.33 5.77 0.58

(0.84)

Panel B: Galton Covariance Matrix

Return-based Estimators
SAMmean 6.46 15.76 0.18 0.90 -119.50 0.00 0.41

(0.43)
46.79 22.74 70.84 0.38

(0.36)

GALmean 8.74 12.98 0.64 0.87 -24.08 0.00 0.67
(0.41)

7.86 4.63 11.09 0.67
(0.42)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 12.21 14.41 0.43 0.83 -147.93 0.00 0.85

(0.18)
343.01 236.52 449.49 0.57

(1.00)

FMwls 11.83 14.20 0.44 0.82 -147.68 0.00 0.83
(0.19)

338.51 229.57 447.45 0.56
(0.97)

GFMlarge 11.97 13.78 0.66 0.86 -90.72 0.00 0.87
(0.07)

211.48 120.69 302.27 0.73
(0.33)

GFMwls 11.32 13.12 0.77 0.87 -84.63 0.00 0.86
(0.08)

190.45 88.05 292.86 0.76
(0.24)

Machine Learning
AGLASSOlarge 9.72 13.68 0.39 0.89 -106.90 0.00 0.71

(0.53)
147.90 126.80 168.99 0.57

(0.99)

IPCAK=5,large 10.29 12.73 0.69 0.85 -81.31 0.00 0.81
(0.18)

76.12 50.65 101.60 0.75
(0.32)

CA2K=5 12.57 14.62 0.56 0.86 -139.27 0.00 0.86
(0.14)

319.18 209.51 428.86 0.62
(0.78)

NN3 13.41 14.62 0.63 0.86 -120.33 0.00 0.92
(0.04)

245.45 129.03 361.86 0.77
(0.25)

Panel C: DCC-GARCH with Nonlinear Shrinkage

Return-based Estimators
SAMmean 5.62 19.18 0.12 1.17 -205.38 0.00 0.29

(0.20)
156.62 77.43 235.81 0.22

(0.11)

GALmean 12.30 18.97 0.68 1.28 -99.15 0.00 0.65
(0.63)

138.70 28.09 249.32 0.62
(0.77)

Fama-MacBeth Regressions without/with the Galton Correction
FMlarge 13.23 19.11 0.37 1.19 -238.96 0.00 0.69

(0.57)
494.18 309.65 678.71 0.42

(0.47)

FMwls 13.30 18.54 0.40 1.16 -232.01 0.00 0.72
(0.48)

493.91 301.86 685.96 0.45
(0.53)

GFMlarge 15.38 19.02 0.65 1.23 -173.77 0.00 0.81
(0.19)

352.28 178.10 526.46 0.66
(0.61)

GFMwls 14.75 18.12 0.75 1.20 -166.79 0.00 0.81
(0.16)

334.33 138.22 530.43 0.69
(0.47)

Machine Learning
AGLASSOlarge 12.82 18.65 0.38 1.17 -202.29 0.00 0.69

(0.59)
280.00 204.79 355.20 0.51

(0.79)

IPCAK=5,large 13.76 18.51 0.65 1.25 -173.87 0.00 0.74
(0.38)

192.48 89.79 295.17 0.66
(0.63)

CA2K=5 12.41 18.41 0.44 1.18 -242.61 0.00 0.67
(0.62)

467.35 272.56 662.13 0.43
(0.50)

NN3 12.86 18.31 0.47 1.16 -221.03 0.00 0.70
(0.50)

406.82 183.40 630.24 0.53
(0.82)
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